Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pew đẹp zai
Xem chi tiết
Hoa Dương Trần
Xem chi tiết
Bùi Đức Mạnh
Xem chi tiết
QuocDat
15 tháng 1 2018 lúc 21:16

a) Thay f(3) vào hàm số ta có :

y=f(3)=4.32-5=31

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=4.(-1/2)2-5=-4

b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1

=> f(-1) với x=-1

Bùi Đức Mạnh
15 tháng 1 2018 lúc 21:18

cam on nhe

Nguyễn Hồng Quân
24 tháng 11 2021 lúc 16:29

tfyjtftftfkyh,hjgjfyhfj,fjghjgjfyfyjfjyhfjhyf,hfykfyffuyfh,jyfhjhjhfhjhhhhhcghgiufyf

Khách vãng lai đã xóa
Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 20:24

Ta có: \(-x^2-4x-5\)

\(=-\left(x^2+4x+5\right)\)

\(=-\left(x^2+4x+4\right)-1\)

\(=-\left(x+2\right)^2-1< 0\forall x\)

Hara Nisagami
Xem chi tiết
lê thị hương giang
24 tháng 6 2019 lúc 13:40

\(3x^2-4x+50\)

\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)

\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)

Trang Cao
Xem chi tiết
Trà My
10 tháng 7 2017 lúc 23:32

\(\left(x-3\right)\left(4x+5\right)+19=4x^2-12x+5x-15+19=4x^2-7x+4\)

\(=\left(2x\right)^2-2.\frac{7}{4}.2x+\frac{49}{16}+\frac{15}{16}=\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}>0\Leftrightarrow\left(x-3\right)\left(4x+5\right)+19>0\)(đpcm)

Linh Vũ
Xem chi tiết
Kudo Shinichi
7 tháng 12 2019 lúc 22:26

A=x2-6x+10

A=x2-2*3x+32+1

A=(x-3)2+1

Ta có: (x-3)2> và = 0 với mọi x

Dấu "=" xảy ra=>(x-3)^2=0<=>x-3=0<=>x=3

=>A> và = 1 > 0 với mọi x

Vậy A luôn dương với mọi x

B=4x^2+4x+1+2

B=(2x+1)^2+2

Ta có: (2x+1)^2 > và = 0 với mọi x

Dấu "=" xảy ra<=> (2x+1)^2=0<=>2x+1=0<=>x=-1/2

=>B> và = 2 >0 với mọi x

Vậy B luôn dương với mọi x

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 12 2019 lúc 22:33

a) Đa thức A=x(x-6)+10

Ta có: \(A=x\left(x-6\right)+10\)

\(=x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

hay \(A=x\left(x-6\right)+10>0\forall x\)(đpcm)

b) Đa thức \(B=4x^2-4x+3\)

Ta có: \(B=4x^2-4x+3\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1+2\)

\(=\left(2x-1\right)^2+2\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

hay \(\left(2x-1\right)^2+2\ge2>0\forall x\)

Vậy: \(B=4x^2-4x+3\)>0\(\forall x\in R\)(đpcm)

Khách vãng lai đã xóa
di dep
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:42

a) Ta có: \(x^2+4x+4=x^2-6x+9\)

\(\Leftrightarrow4x+4=-6x+9\)

\(\Leftrightarrow4x+6x=9-4\)

\(\Leftrightarrow10x=5\)

hay \(x=\dfrac{1}{2}\)

b) Ta có: \(B=-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1< 0\forall x\)

Kiêm Hùng
5 tháng 7 2021 lúc 20:43

Bài 1: 

\(pt\Leftrightarrow10x=5\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Bài 2:

\(B=x^2+2x-2\) 

Lấy \(x=1\Rightarrow B=1>0\)

Vậy \(B=x^2+2x-2< 0\forall x\in R\) ( vô lí)

KI RI TO
5 tháng 7 2021 lúc 21:09

a) Ta có: x2+4x+4=x2−6x+9

 

⇔4x+4=−6x+9

 

⇔4x+6x=9−4

 

⇔10x=5

 

hay 

hoa bui
Xem chi tiết