\(\Rightarrow A=x^2+4x+4+1=\left(x+2\right)^2+1\ge1>0\forall x\in R\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=(x+2)^2+1\)
Vì \(x+2)^2 \ge 0\)
\(\Rightarrow (x+2)^2+1 \ge 1>0 \forall x \in R\)
Hay \(A=x^2+4x+5>0 \forall x \in R\)
\(A=x^2+4x+5=x^2+4x+4+1=\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0=>\left(x+2\right)^2+1\ge1\left(\forall x\in R\right)\)
\(=>\left(x+2\right)^2+1>0\left(\forall x\in R\right)\)
Ta có: \(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1>0\forall x\)