Chứng minh rằng ba đơn thức :-1/3x^4y^3;-3/5x^3y^4 và 1/2xy^3 không thể cùng nhận giá trị âm tại cùng các giá trị nào đó của x và y
cho 3 biểu thức A = 3x-2y^2-2z
B = 2z- x^2-4y
C = 4y-5z^2-3x
Với x,y,z,là các số khác 0 .Chứng minh rằng trong ba đa thức trên có ít nhất một đa thức có giá trị âm
Ta có:\(A=3x-2y^2-2z\)
\(B=2z-x^2-4y\)
\(C=4y-5z^2-3x\)
Vậy \(A+B+C=3x-2y^2-2z+2z-x^2-4y+4y-5z^2-3x\)
\(=-x^2-2y^2-5z^2\)
\(\text{Với x,y,z}\)\(\ne0\)\(\text{thì }\)\(-x^2-2y^2-5z^2< 0\)
\(\Rightarrow A+B+C< 0\)
\(\RightarrowĐPCM\)
Chứng minh rằng ba đơn thức : \(-\frac{1}{17}x^4y^3;\frac{17}{19}xy^4;-2x^7y\)không thể có cùng giá trị âm
cho 3 biểu thức A = 3x-2y^2-2z
B = 2z- x^2-4y
C = 4y-5z^2-3x
Với x,y,z,là các số khác 0 .Chứng minh rằng trong ba đa thức trên có ít nhất một đa thức có giá trị âm
Cho A = -4x\(y^3\) ; B=\(3x^2y^4\) ; C=2\(x^3y^5\) .Chứng minh rằng: ba đơn thức A, B, C
không thể có cùng giá trị dương.
\(B=3x^2y^4>0\forall x,y\) nên ta không xét.
-Khi x,y dương (hoặc x,y âm) thì A âm, C dương.
-Khi x dương, y âm (hoặc x âm, y dương) thì A dương, C âm.
-Vậy 3 đơn thức A,B,C ko thể có cùng giá trị dương.
Cho đa thức :A=3x-2y^2-2z,B=2z-x^2-4y;C=4y-5z^2-3x với x,y,z là các số khác 0.Chứng minh rằng trong 3 số trên có ít nhất 1 đa thức có giá trị âm.
giúp với!
chứng minh rằng 3 đơn thức: -1/4x^3y^4 ; -4/5x^4y^3 ; 1/2xy không thể có cùng giá trị âm.
Lời giải:
Nhân 3 đơn thức với nhau ta có:
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=(\frac{-1}{4}.\frac{-4}{5}.\frac{1}{2})x^{3+4+1}.y^{4+3+1}\)
\(=\frac{1}{10}.x^8y^8\)
Ta thấy $x^8,y^8\geq 0, \forall x,y$ nên $\frac{1}{10}x^8y^8$ luôn không âm, hay tích 3 đơn thức luôn không âm.
Nếu tồn tại giá trị $x,y$ để 3 đơn thức cùng có giá trị âm thì tích của nó nhận giá trị âm (vô lý- đã chứng minh trên)
Do đó ta có đpcm.
Lời giải:
Nhân 3 đơn thức với nhau ta có:
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=(\frac{-1}{4}.\frac{-4}{5}.\frac{1}{2})x^{3+4+1}.y^{4+3+1}\)
\(=\frac{1}{10}.x^8y^8\)
Ta thấy $x^8,y^8\geq 0, \forall x,y$ nên $\frac{1}{10}x^8y^8$ luôn không âm, hay tích 3 đơn thức luôn không âm.
Nếu tồn tại giá trị $x,y$ để 3 đơn thức cùng có giá trị âm thì tích của nó nhận giá trị âm (vô lý- đã chứng minh trên)
Do đó ta có đpcm.
cho (3x-4y) ⋮ 3
chứng minh rằng (3x+y) ⋮ 3
cac bạn ơi giúp mk bài này với :
Cho ba đa thức : A=3x - 2y^2 - 2z ; B = 2z-x^2-4y ; C = 4y-5z^2-3x cới x,y,z là các số khác 0 .Chững minh rằng trong ba đa thức trên phải co1 đa thức có gt âm
Ta có :
A+B+C = ( 3x - 2y2 -2y) + ( 2z - x2 -4y ) + ( 4y - 5z2 - 3x )
= -2y2 - x2 - 5z2 ( đoạn này mk làm tắt nhá )
= - 2y2 + ( -x2) + ( -5z2 )
= -( 2y2 + x2 + 5z2 ) < 0
vì x, y , z \(\ne\)0 nên \(\hept{\begin{cases}2y^2>0\\x^2>0\\5z^2>0\end{cases}}\)
=> 2y2 + x2 + 5z2 >0
=> - ( 2y2 + x2 + 5z2 ) <0
nên A+B+C <0
Tổng 3 đa thức trên <0 . Vậy trong 3 đa thức trên phải có ít nhất 1 đa thức có g.trị âm
Ta có:A=3x−2y^2−2z
B=2z−x^2−4y
C=4y−5z^2−3x
Vậy A+B+C=3x−2y^2−2z+2z−x^2−4y+4y−5z^2−3x
=−x^2−2y^2−5z^2
Với x,y,z≠0thì−x^2−2y^2−5z^2<0
⇒A+B+C<0
⇒ĐPCM
Bài 1: Hai đơn thức -3x4y và 5x2y3 có thể cùng có giá trị dương được không?
Bài 2: Chứng minh rằng ba đơn thức -1/4x3y4; -4/5x4y3, 1/2 xy không thể cùng có giá trị âm.
1)
xét tích :
-3x4y . 5x2y3 = -15x6y4
vì x6 \(\ge\)0 ; y4 \(\ge\)0 nên -15x6y4 \(\le\)0
Vậy hai đơn thức này không thể cùng dương
xét tích :
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy\)
\(=\frac{1}{10}x^8y^8\)\(\ge\)0
Vậy ba đơn thức không thể cùng có giá trị âm