A=2+ 2^2+ 2^3+ ...+ 2^60 chứng tỏ A chia hết cho 3, 7 và 5
1/Chứng tỏ 77 là ước của A=76+75-74
2/Cho A=2+22+23+...+260.Chứng tỏ rằng A là bội của 3, của 7 và của 15
3/Cho B=1+5+52+53+...+596+597+598. Chứng tỏ B chia hết cho 31
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Chứng tỏ :
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho cả 2 và 5
1/ so sánh 2*60 và 3*40
2/tìm ƯC của 2 số n+3 và 2n+5
3/A=5+5*2+5*3+5*4+...+5*99 chia hết cho 31
4/chứng tỏ (n+1) (n+2) (n+3) chia hết cho 6
5/ Chứng minh 3n+2 và 3n+3 (n\(\in\) n) là 2 số nguyên tố
6/tính tổng 2*1+2*2+2*3+...+2*100-2*101
7chung71 tỏ rằng số có dạng \(\frac{ }{abcabc}\) bao giờ chũng chia hết cho 11
8/Tìm số tự nhiên \(\frac{ }{abc}\) có 3 chữ số khác nhau , chia hết cho các số nguyên tố a,b,c.
Giúp mình với thứ 6 mình phải nộp rồi
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
7)Ta có:abcabc=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c
=11(9100a+910b+91c)\(⋮11\)
Vậy số có dạng abcabc luôn chia hết cho 11(đpcm)
a) Cho abc chia hết 27 . Chứng minh bca chia hết 27.
b) Chứng tỏ 31/2 x 32/2 x 33/2 x ... x 60/2 = 1 x 3 x 5 x ..... x 59
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
Tạo sao đó ?
abc chia hết 27 thì bca lại chia hết 27
AI BIẾT LÀM BÀI NÀY CHỈ GIÚP EM VỚI Ạ!!!
Cho A = 3 + 3^2 + 3^3 +..... + 3^60. Chứng tỏ rằng:
a) A chia hết cho 4
b) A chia hết cho 13
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
Cho S=5+52+53+.......+52012.Chứng tỏ S chia hết cho 65
Tìm số tự nhiên nhỏ nhất chia cho 11dư 6 chia cho 4 dư 1 và chia cho 19 dư 11
Chứng tỏ A=10n+18n-1 chia hết cho 27 (với n là số tự nhiên)
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
A= 7+ 7^2 +7^3 +....+ 7^ 2021 chứng tỏ A chia hết cho 8 nhưng không chia hết cho 57
giúp em với ạ em đang cần gấp
Nó cũng đâu chia hết cho 8 đâu nhỉ?