Cho 1/M=1/(1+2+3) + 1/(1+2+3+4) +.....+ 1/(1+2+3+4+...+59)
Chứng minh rằng M>2/3
Cho \(\frac{1}{M}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+...+5}+....+\frac{1}{1+2+...+59}\)Chứng minh rằng M>2/3
\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)
\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)
\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)
\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)
-theo t đề là M chứ ko phải 1/M
Cho:
\(\frac{1}{m}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)
Chứng minh rằng: \(m>\frac{2}{3}\).
Ta có : \(\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\)
\(\Rightarrow m=\frac{30}{19}>\frac{2}{3}\)
\(Tac\text{ó}:\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{59}-\frac{1}{60}\right)\)
\(=>2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\\ =>m=\frac{30}{19}>\frac{2}{3}\)
Cho M=(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+3+...+59) . Chứng minh M<2/3
CHO
\(\frac{1}{M}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}+...+\frac{1}{1+2+3+...+59}\)
Chứng minh rằng M>\(\frac{2}{3}\)
\(\frac{1}{M}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}+...+\frac{1}{1+2+3+...+59}\)
\(\frac{1}{M}=\frac{1}{3\left(1+3\right):2}+\frac{1}{4\left(1+4\right):2}+\frac{1}{5\left(1+5\right):2}+...+\frac{1}{59\left(1+59\right):2}\)
\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)
\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{60}\right)\)
\(\frac{1}{M}=\frac{1}{2}.\frac{19}{60}\)
\(\frac{1}{M}=\frac{19}{120}\)
\(M=\frac{120}{19}>\frac{2}{3}\left(đpcm\right)\)
chứng minh m=1/1+2+3+1/1+2+3+4+1/1+2+3+4+5+...1/1+2+3+...+59 <2/3
\(ChoM+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+4+...+59}.\)
Chứng minh rằng \(M< \frac{2}{3}\)
Cho \(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)
Chứng minh: M<2/3
1. Chứng minh: \(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)
2. Chứng minh: \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6
M = 3n+1.(32 + 1) + 2n+2.(2 + 1)
M = 3n.3.(9 + 1) + 2n+1.2 . 3
M = 3n.30 + 2n+1.6
M = 6.(3n.5 + 2n+1)
Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)
Cho \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...................+\dfrac{1}{1+2+3+...........+59}\)
Chứng minh \(M< \dfrac{2}{3}\)
Help me!!!!!!!!!!!!!!
\(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\\ =\dfrac{1}{\dfrac{3\cdot4}{2}}+\dfrac{1}{\dfrac{4\cdot5}{2}}+...+\dfrac{1}{\dfrac{59\cdot60}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{59\cdot60}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\right)\\ =2\cdot\dfrac{19}{60}\\ =\dfrac{38}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)