CMR
a) Nếu \(x^2+y^2+z^2=xy+yz+xz\)thì x=y=z
b) Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
cmr nếu x,y,z khác 0 và x+y+z=0 thì x^4/yz + y^4/xz + z^4/xy = (5/2)(x^2+y^2+z^2)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
chứng minh rằng : x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(VT=x^3+y^3+z^3-3xyz.\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)
cmr
a, x^4-y^4=(x-y)(x^3-x^2y+xy^2+y^3)
b,x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
a)
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)
b)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)
\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)
\(=x^3+y^3+z^3-3xyz\)
Cho x,y,z > 0 có xy+yz+xz = 3xyz CMR : \(\dfrac{x^3}{x^2+z}+\dfrac{y^3}{y^2+x}+\dfrac{z^3}{z^2+y}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Lời giải:
Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)
Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)
-------
Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)
\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)
\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)
\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)
Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)
Suy ra:
\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)
\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
CMR: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Cho x+y+z=0. Chứng minh rằng
a) x3+y3+z3=3xyz
b)(xy+yz+xz)2=x2y2+y2z2+x2z2
c)x4+y4+z4=2(xy+yz+xz)2
a, \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)( 1 )
Nhận xét : \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2-3xy^2\)
Thay vào ( 1 ) ta có :
\(\left(x+y\right)^3+c^3-3x^2y-3xy^2-3xyz\)
\(=\left(z+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(z+y+z\right)\left(z^2+2xy+y^2-xz-yz+z^2\right)-3xyz\left(z+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(z^2+x^2+y^2-xy-yz-xz\right)\)
Vì theo đầu bài ta có: \(x+y+z=0\)nên ta có ( DPCM ) ..... học cho tốt nhé!
CMR: x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2- xy - yz - xz)
Bạn tham khảo tại link sau:
Giải giúp mk mấy bài này nha:
1/x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
2/xy(x-y) - xz(x+z) - yz (2x-y+z)
3/x (y+z)2 + y(z-x)2 + z(x+y)2 - 4xyz
4/yz(y+z) - xz (z-x) - (x+y)
Cảm ơn nhiều lắm ạ