Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Nguyễn Thị Anh
18 tháng 6 2016 lúc 21:07

tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)

 khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10

⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .

Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).

Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.


 

Đồng Hồ Cát 3779
18 tháng 6 2016 lúc 21:37

cãi nhau à>

Hoàng Phúc
19 tháng 6 2016 lúc 7:39

Ơ, thầy phynit có nhầm lẫn ko vậy, trong đề là 15 mà?

Linh Chi Phạm
Xem chi tiết
Lê Hà Phương
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 8 2016 lúc 19:18

Vai trò của \(x;y;z;t\)như nhau nên ta coi \(x\ge y\ge z\ge t\)

\(\Rightarrow2xyzt=5\left(x+y+z+t\right)+15\le20x+15\)

\(\Rightarrow xyzt\le10x+3\)

\(x\ge1\)( nguyên dương )

\(\Rightarrow yzt\le13\)

\(\Rightarrow3t\le13\)

\(\Rightarrow t\le4\)

Với \(t=1:\)

\(2xyz.1=5\left(x+y+z+1\right)+15\)

\(2xyz=5\left(x+y+z\right)+20\le15x+20\)

\(\Rightarrow2yz\le35\)

\(\Rightarrow2.2z\le35\left(y\ge z\right)\)

\(\Rightarrow z\le8\)

Thôi nhiều trường hợp lắm bà tự giải theo hướng đó nhé. Tớ còn chưa học phương trình.

Hoàng Phúc
5 tháng 8 2016 lúc 22:28

Lâu r ko làm thử bài pt nghiệm nguyên nào

\(5\left(x+y+z+t\right)+15=2xyzt\left(1\right)\)

Không mất tính tổng quát,giả sử \(1\le x\le y\le z\le t\)

Dễ thấy cả 2 vế đều khác 0,chia 2 vế của pt cho xyzt:

\(\left(1\right)\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}=2\)

\(\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\)

\(\Leftrightarrow2\le\frac{35}{x^3}\Leftrightarrow2x^3\le35\Leftrightarrow x\in\left\{1;2\right\}\)

(*)x=1

\(=>2=\frac{5}{yz}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yzt}+\frac{15}{yzt}\le\frac{35}{y^2}\)

\(=>2\le\frac{35}{y^2}=>2y^2\le35=>y^2\le\frac{35}{2}=>y\in\left\{1;2;3;4\right\}\)

+x=1;y=1 thì \(\left(1\right)< =>5\left(z+t\right)+25=2zt< =>5z+5t+25=2zt\)

\(< =>4zt=2\left(5z+5t+25\right)=10z+10t+50\)

\(< =>4zt-10z-10t-50=0< =>4zt-10z-10t+25=75\)

\(< =>2z\left(2t-5\right)-5\left(2t-5\right)=75< =>\left(2z-5\right)\left(2t-5\right)=75\)

\(1\le z\le t=>-3\le2z-5\le2t-5\)

\(=>\left(2z-5\right)\left(2t-5\right)=75=75.1=25.3=15.5\)

Ta xét bảng:

2z-5752515
2t-513

5

Suy ra :(z;t)=(3;40);(4;15);(5;10)

+x=1;y=2 thì \(\left(1\right)< =>5\left(z+t\right)+30=4zt< =>5z+5t+30=4zt\)

\(< =>16zt=4\left(5z+5t+30\right)< =>16zt=20z+20t+120\)

\(< =>16zt-20z-20t-140=0< =>16zt-20z-20t+25=145\)

\(< =>\left(4z-5\right)\left(4t-5\right)=145\)

Xét bảng.... => ko tìm đc (z;t)=>loại TH này

+x=1;y=3 thì  \(\left(1\right)< =>5\left(z+t\right)+35=6zt< =>5z+5t+35=6zt\)

\(< =>36zt=6\left(5z+5t+35\right)< =>36zt=30z+30t+210\)

\(< =>36zt-30z-30t-210=0< =>36zt-30z-30t+25=135\)

\(< =>\left(6z-5\right)\left(6t-5\right)=235\)

Xét bảng=> ko tìm đc (z;t)=>loại TH này

+x=1;y=4 thì \(\left(1\right)< =>5\left(z+t\right)+40=8zt< =>5z+5t+40=8zt\)

\(< =>6zt=8\left(5z+5t+40\right)=40z+40t+320\)

\(< =>6zt-40z-40t-320=0< =>6zt-40z-40t+25=345\)

\(< =>\left(8z-5\right)\left(8t-5\right)=345\)

Xét bảng=>ko tìm đc (z;t)=>loại TH này

(*)x=2 thì \(\left(1\right)< =>5\left(y+z+t\right)+25=4yzt\),chia 2 vế của pt cho yzt:

\(< =>\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}< =>4y^2\le40< =>4\le y^2\le10\)

\(< =>y\in\left\{2;3\right\}\)

+x=2;y=2 thí \(\left(1\right)< =>5\left(z+t\right)+35=8zt< =>5z+5t+35=8zt\)

\(< =>64zt=8\left(5z+5t+35\right)=40z+40t+280\)

\(< =>64zt-40z-40t-280=0< =>64zt-40z-40t+25=305\)

\(< =>\left(8z-5\right)\left(8t-5\right)=305\)

Xét bảng=>ko tìm đc (z;t)=>loại TH này

+x=2;y=3 thì \(\left(1\right)< =>5\left(z+t\right)+40=12zt< =>5z+5t+40=12zt\)

\(< =>144zt=60z+60t+480\)

\(< =>144zt-60z-60t-480=0< =>144zt-60z-60t+25=505\)

Xét bảng=>ko tìm đc (z;t)=>loại TH này

Vậy pt (1) có các nghiệm (x;y;z;t) nguyên dương là (1;1;3;40);(1;1;5;10);(1;1;4;15) và các hoán vị của nó

Lê Hà Phương
5 tháng 8 2016 lúc 22:51

Đặt: \(A=5\left(x+y+z+t\right)+15=2xyzt\) 

Giả sử: \(x\le y\le z\le t\)

\(A\Leftrightarrow\frac{5}{yzt}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{xyt}+\frac{15}{xyzt}=2\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\) 

Hay \(2x^3\le35\Rightarrow x\in\left\{1;2\right\}\)

TH1: \(x=1\) Ta có: \(\frac{5}{yzt}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{15}{yzt}=2\le\frac{35}{x^3}\)

\(\Rightarrow2y^2\le35\Rightarrow y\in\left\{1;2;3;4\right\}\)

+ Nếu \(x=1;y=1\)

\(A\Leftrightarrow5\left(2+z+t\right)+15=2zt\)

 \(\Leftrightarrow2\left(zt\right)+25=2zt\)

\(\Leftrightarrow5z+5t-2zt+25=0\)

\(\Leftrightarrow10z+10t-4zt+50=0\)

\(\Leftrightarrow10z-25+2t\left(5-2z\right)+75=0\)

\(\Leftrightarrow-5\left(5-2z\right)+2t.\left(5-2z\right)=-75\)

\(\Leftrightarrow\left(2t-5\right)\left(2z-5\right)=75=1.75=3.25=5.15\)

Có: \(-3\le2z-5\le2t-5\)

\(\Rightarrow\left(z;t\right)=\left(3;40\right),\left(4;15\right),\left(5;10\right)\)

+ Nếu \(x=1;y=2\)
\(A\Leftrightarrow5\left(3+z+t\right)+15=6zt\)

\(\Leftrightarrow5\left(z+t\right)+30=6zt\)

\(\Leftrightarrow\left(4z-5\right)\left(4t-5\right)=145\)

Vì \(4z-5\) và \(4t-5\) chia 4 dư 3 mà 145 không chứa thừa số chia 4 dư 3 suy ra phương trình vô nghiệm

Nếu \(x=1;y=3\Leftrightarrow\left(6z-5\right)\left(6t-5\right)=235\) 

Có \(13\le6z-5\le6t-5\) mà \(235=5.47=1.235\) 

=> phương trình cũng vô nghiệm

Xét \(x=1;y=4\)

\(\Rightarrow\left(8z-5\right)\left(8t-5\right)=345\)

=> phương trình vô nghiệm

TH2: \(x=2\)

\(A\Leftrightarrow5\left(2+y+z+t\right)+15=4yzt\)

\(\Leftrightarrow\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}\Rightarrow y\in\left\{2;3\right\}\)

Nếu \(x=2;y=2\)

Ta có: \(5\left(4+z+t\right)+15=8zt\) 

\(\Leftrightarrow5\left(z+t\right)+35=8zt\)

\(\Leftrightarrow\left(8z-5\right)\left(8t-5\right)=305\).

=> phương trình vô nghiệm

Xét \(x=3;y=3\)

\(\Rightarrow\left(12z-5\right)\left(12t-5\right)=505\)

=> phương trình vô nghiệm

Kết luận:.......

Mai Tiến Đỗ
Xem chi tiết
STY
Xem chi tiết
super xity
Xem chi tiết
nguyen khanh linh
31 tháng 3 2016 lúc 16:04

câu b giả sử x>_y>_z>_t>_1      (>_ lớn hơn hoặc =)

khi do 2xyzt=5(x+y+z+t)+10 _< 20x+10

=>xyzt _<10x+5 _<15x=>yzt_<15=>t^3_<15=>t_<2(vi t la nguyen duong)

voi t=1  ta co 2xyz=5(x+y+z)+15=>2yz _<30=>z_<3

 roi tiep tuc thu cac truong hop can lai 

voi t=2 lam tuong tu 

nguyen khanh linh
31 tháng 3 2016 lúc 15:03

phần b của bạn hình như đề bài sai nếu là +0 thì có ý nghĩa j phải là +10 chứ

nguyen khanh linh
31 tháng 3 2016 lúc 15:05

câu b đề bài sai rồi  là 5(x+y+z+t)+10=2xyzt chu 

Trần Đình Thuyên
Xem chi tiết
alibaba nguyễn
14 tháng 6 2017 lúc 9:58

Ta có:

\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)

\(\Rightarrow A\ge16\)

Đấu = xảy ra khi \(t=2z=4x=4y=1\)

Trần Đình Thuyên
15 tháng 6 2017 lúc 12:02

x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :

=\(x+y\ge2\sqrt{xy}\)

=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

nhân các vế tương ứng ta có:

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

mà x+y+z+t=2

\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)

vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)

Trịnh Minh Hiếu
Xem chi tiết
Trần Hà Mi
Xem chi tiết
ngonhuminh
14 tháng 1 2017 lúc 13:30

\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)

\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)

có nghiệm \(\Rightarrow b^2-4a\ge0\)

\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)

Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn

\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)

\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)

\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)

Hiệu hai số CP =4 duy nhất có 4 và 0

\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)