Tìm x,y,z,t nguyên dương thỏa mãn \(5\left(x+y+z+t\right)+10=2xyzt\)
Đinh Tuấn Việt chỉ giỏi khoác lác thôi,giỏi thì làm bài này đi:
Tìm x;y;z;t là các số nguyên dương thỏa mãn: \(5\left(x+y+z+t\right)+15=2xyzt\)
tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)
khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10
⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .
Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).
Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.
Ơ, thầy phynit có nhầm lẫn ko vậy, trong đề là 15 mà?
a, 4(x+y+z) = xyz
b, x+y+z -9- -xyz = 0
2.Tìm các số nguyên dương x,y,z,t thỏa mãn:
5(x+y+z+t)+10= 2xyzt
3.Tìm các số nguyên dương x,y,z,t thỏa mãn:
\(\frac{1}{^{x^2}}\)+\(\frac{1}{y^2}\)+\(\frac{1}{z^2}\)+\(\frac{1}{t^2}\)= 1
Bạn nào trả lời nhanh, đúng : mk chọn.
Tìm nghiệm nguyên dương của phương trình:
\(5\left(x+y+z+t\right)+15=2xyzt\)
Vai trò của \(x;y;z;t\)như nhau nên ta coi \(x\ge y\ge z\ge t\)
\(\Rightarrow2xyzt=5\left(x+y+z+t\right)+15\le20x+15\)
\(\Rightarrow xyzt\le10x+3\)
\(x\ge1\)( nguyên dương )
\(\Rightarrow yzt\le13\)
\(\Rightarrow3t\le13\)
\(\Rightarrow t\le4\)
Với \(t=1:\)\(2xyz.1=5\left(x+y+z+1\right)+15\)
\(2xyz=5\left(x+y+z\right)+20\le15x+20\)
\(\Rightarrow2yz\le35\)
\(\Rightarrow2.2z\le35\left(y\ge z\right)\)
\(\Rightarrow z\le8\)
Thôi nhiều trường hợp lắm bà tự giải theo hướng đó nhé. Tớ còn chưa học phương trình.
Lâu r ko làm thử bài pt nghiệm nguyên nào
\(5\left(x+y+z+t\right)+15=2xyzt\left(1\right)\)
Không mất tính tổng quát,giả sử \(1\le x\le y\le z\le t\)
Dễ thấy cả 2 vế đều khác 0,chia 2 vế của pt cho xyzt:
\(\left(1\right)\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}=2\)
\(\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\)
\(\Leftrightarrow2\le\frac{35}{x^3}\Leftrightarrow2x^3\le35\Leftrightarrow x\in\left\{1;2\right\}\)
(*)x=1
\(=>2=\frac{5}{yz}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yzt}+\frac{15}{yzt}\le\frac{35}{y^2}\)
\(=>2\le\frac{35}{y^2}=>2y^2\le35=>y^2\le\frac{35}{2}=>y\in\left\{1;2;3;4\right\}\)
+x=1;y=1 thì \(\left(1\right)< =>5\left(z+t\right)+25=2zt< =>5z+5t+25=2zt\)
\(< =>4zt=2\left(5z+5t+25\right)=10z+10t+50\)
\(< =>4zt-10z-10t-50=0< =>4zt-10z-10t+25=75\)
\(< =>2z\left(2t-5\right)-5\left(2t-5\right)=75< =>\left(2z-5\right)\left(2t-5\right)=75\)
Vì \(1\le z\le t=>-3\le2z-5\le2t-5\)
\(=>\left(2z-5\right)\left(2t-5\right)=75=75.1=25.3=15.5\)
Ta xét bảng:
2z-5 | 75 | 25 | 15 |
2t-5 | 1 | 3 | 5 |
Suy ra :(z;t)=(3;40);(4;15);(5;10)
+x=1;y=2 thì \(\left(1\right)< =>5\left(z+t\right)+30=4zt< =>5z+5t+30=4zt\)
\(< =>16zt=4\left(5z+5t+30\right)< =>16zt=20z+20t+120\)
\(< =>16zt-20z-20t-140=0< =>16zt-20z-20t+25=145\)
\(< =>\left(4z-5\right)\left(4t-5\right)=145\)
Xét bảng.... => ko tìm đc (z;t)=>loại TH này
+x=1;y=3 thì \(\left(1\right)< =>5\left(z+t\right)+35=6zt< =>5z+5t+35=6zt\)
\(< =>36zt=6\left(5z+5t+35\right)< =>36zt=30z+30t+210\)
\(< =>36zt-30z-30t-210=0< =>36zt-30z-30t+25=135\)
\(< =>\left(6z-5\right)\left(6t-5\right)=235\)
Xét bảng=> ko tìm đc (z;t)=>loại TH này
+x=1;y=4 thì \(\left(1\right)< =>5\left(z+t\right)+40=8zt< =>5z+5t+40=8zt\)
\(< =>6zt=8\left(5z+5t+40\right)=40z+40t+320\)
\(< =>6zt-40z-40t-320=0< =>6zt-40z-40t+25=345\)
\(< =>\left(8z-5\right)\left(8t-5\right)=345\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
(*)x=2 thì \(\left(1\right)< =>5\left(y+z+t\right)+25=4yzt\),chia 2 vế của pt cho yzt:
\(< =>\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}< =>4y^2\le40< =>4\le y^2\le10\)
\(< =>y\in\left\{2;3\right\}\)
+x=2;y=2 thí \(\left(1\right)< =>5\left(z+t\right)+35=8zt< =>5z+5t+35=8zt\)
\(< =>64zt=8\left(5z+5t+35\right)=40z+40t+280\)
\(< =>64zt-40z-40t-280=0< =>64zt-40z-40t+25=305\)
\(< =>\left(8z-5\right)\left(8t-5\right)=305\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
+x=2;y=3 thì \(\left(1\right)< =>5\left(z+t\right)+40=12zt< =>5z+5t+40=12zt\)
\(< =>144zt=60z+60t+480\)
\(< =>144zt-60z-60t-480=0< =>144zt-60z-60t+25=505\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
Vậy pt (1) có các nghiệm (x;y;z;t) nguyên dương là (1;1;3;40);(1;1;5;10);(1;1;4;15) và các hoán vị của nó
Đặt: \(A=5\left(x+y+z+t\right)+15=2xyzt\)
Giả sử: \(x\le y\le z\le t\)
\(A\Leftrightarrow\frac{5}{yzt}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{xyt}+\frac{15}{xyzt}=2\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\)
Hay \(2x^3\le35\Rightarrow x\in\left\{1;2\right\}\)
TH1: \(x=1\) Ta có: \(\frac{5}{yzt}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{15}{yzt}=2\le\frac{35}{x^3}\)
\(\Rightarrow2y^2\le35\Rightarrow y\in\left\{1;2;3;4\right\}\)
+ Nếu \(x=1;y=1\)
\(A\Leftrightarrow5\left(2+z+t\right)+15=2zt\)
\(\Leftrightarrow2\left(zt\right)+25=2zt\)
\(\Leftrightarrow5z+5t-2zt+25=0\)
\(\Leftrightarrow10z+10t-4zt+50=0\)
\(\Leftrightarrow10z-25+2t\left(5-2z\right)+75=0\)
\(\Leftrightarrow-5\left(5-2z\right)+2t.\left(5-2z\right)=-75\)
\(\Leftrightarrow\left(2t-5\right)\left(2z-5\right)=75=1.75=3.25=5.15\)
Có: \(-3\le2z-5\le2t-5\)
\(\Rightarrow\left(z;t\right)=\left(3;40\right),\left(4;15\right),\left(5;10\right)\)
+ Nếu \(x=1;y=2\)
\(A\Leftrightarrow5\left(3+z+t\right)+15=6zt\)
\(\Leftrightarrow5\left(z+t\right)+30=6zt\)
\(\Leftrightarrow\left(4z-5\right)\left(4t-5\right)=145\)
Vì \(4z-5\) và \(4t-5\) chia 4 dư 3 mà 145 không chứa thừa số chia 4 dư 3 suy ra phương trình vô nghiệm
Nếu \(x=1;y=3\Leftrightarrow\left(6z-5\right)\left(6t-5\right)=235\)
Có \(13\le6z-5\le6t-5\) mà \(235=5.47=1.235\)
=> phương trình cũng vô nghiệm
Xét \(x=1;y=4\)
\(\Rightarrow\left(8z-5\right)\left(8t-5\right)=345\)
=> phương trình vô nghiệm
TH2: \(x=2\)
\(A\Leftrightarrow5\left(2+y+z+t\right)+15=4yzt\)
\(\Leftrightarrow\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}\Rightarrow y\in\left\{2;3\right\}\)
Nếu \(x=2;y=2\)
Ta có: \(5\left(4+z+t\right)+15=8zt\)
\(\Leftrightarrow5\left(z+t\right)+35=8zt\)
\(\Leftrightarrow\left(8z-5\right)\left(8t-5\right)=305\).
=> phương trình vô nghiệm
Xét \(x=3;y=3\)
\(\Rightarrow\left(12z-5\right)\left(12t-5\right)=505\)
=> phương trình vô nghiệm
Kết luận:.......
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm nghiệm nguyên dương của phương trình sau :
5(x + y + z + t) + 10 = 2xyzt
Tìm nghiệm nguyên dương của phân thức
a , x + y + z + 9 = xyz
b, 5( x + y + z+ t ) + 10 = 2xyzt
giải chi tiết giùm nha
câu b giả sử x>_y>_z>_t>_1 (>_ lớn hơn hoặc =)
khi do 2xyzt=5(x+y+z+t)+10 _< 20x+10
=>xyzt _<10x+5 _<15x=>yzt_<15=>t^3_<15=>t_<2(vi t la nguyen duong)
voi t=1 ta co 2xyz=5(x+y+z)+15=>2yz _<30=>z_<3
roi tiep tuc thu cac truong hop can lai
voi t=2 lam tuong tu
phần b của bạn hình như đề bài sai nếu là +0 thì có ý nghĩa j phải là +10 chứ
câu b đề bài sai rồi là 5(x+y+z+t)+10=2xyzt chu
cho x;y;z;t là các số thực dương thỏa mãn x+y+z+t=2 HÃY TÌM GTNN của
A= \(\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\)
Ta có:
\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)
\(\Rightarrow A\ge16\)
Đấu = xảy ra khi \(t=2z=4x=4y=1\)
x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :
=\(x+y\ge2\sqrt{xy}\)
=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
nhân các vế tương ứng ta có:
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
mà x+y+z+t=2
\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)
vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
Cho các số nguyên dương x,y,z thỏa mãn:
\(\hept{\begin{cases}x.y=\left(z.t\right)-1\\x+y=z+t\end{cases}}\)
CMR: z = t
\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)
\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)
có nghiệm \(\Rightarrow b^2-4a\ge0\)
\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)
Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn
\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)
\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)
\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)
Hiệu hai số CP =4 duy nhất có 4 và 0
\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)