So sánh: \(\frac{10^{19}+1}{10^{20}+1}\) và \(\frac{10^{20}+1}{10^{21}+1}\)
So sánh A = \(\frac{10^{19}+1}{10^{20}+1}\) và B = \(\frac{10^{20}+1}{10^{21}+1}\) ?
Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)
Ta có:
\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)
\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
so sánh
A=\(\frac{10^{19}+1}{10^{20}+1}\)và B=\(\frac{10^{20}+1}{10^{21}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
So sánh phân số sau : A=\(\frac{^{10^{19}}+1}{10^{20}+1}\)và B = \(\frac{10^{20}+1}{10^{21}+1}\)
Ta thấy B < 1 và 9 > 1 nên ta có:
B < 1020 + 1 + 9 / 1021 + 1 + 9
=> B < 1020 + 10 / 1021 + 10
=> B < 10(1019 + 1) / 10(1020 + 1)
=> B < 1019 + 1 / 1020 + 1 = A
=> B < A
So sánh A = \(\frac{10^{19}+1}{10^{20}+1}\) và B = \(\frac{10^{20}+1}{10^{21}+1}\) ?
Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)
=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)
=>10A=1+\(\frac{9}{10^{20}+1}\)
Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)
=>10B=1+\(\frac{9}{10^{21}+1}\)
Do \(\frac{9}{10^{20}+1}\)> \(\frac{9}{10^{21}+1}\)=>A > B
So sánh A và B biết
A=\(\frac{10^{19}+1}{10^{20}+1}\)
B=\(\frac{10^{20}+1}{10^{21}+1}\)
10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)
10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)
Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B
So sánh M=10^20+1/10^19+1 và N=10^21+1/10^20+1
\(M=\dfrac{10^{20}+1}{10^{19}+1}\)
\(N=\dfrac{10^{21}+1}{10^{20}+1}< \dfrac{10^{21}+1+9}{10^{20}+1+9}=\dfrac{10^{21}+10}{10^{20}+10}=\dfrac{10\left(10^{20}+1\right)}{10\left(10^{19}+1\right)}=\dfrac{10^{20}+1}{10^{19}+1}=M\)
\(\Rightarrow N< M\)
so sánh M = 10^20+1/10^19+1 và N = 10^21+1/10^20+1
M = \(\dfrac{10^{20}+1}{10^{19}+1}\) = 10 - \(\dfrac{9}{10^{19}+1}\) ; N = \(\dfrac{10^{21}+1}{10^{20}+1}\) = 10 - \(\dfrac{9}{10^{20}+1}\)
Vì \(\dfrac{9}{10^{19}+1}\) > \(\dfrac{9}{10^{20}+1}\)
⇒ M < N (phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn)
\(M=\dfrac{10^{20}+1}{10^{19}+1}\)
\(N=\dfrac{10^{21}+1}{10^{20}+1}< \dfrac{10^{21}+1+9}{10^{20}+1+9}=\dfrac{10^{21}+10}{10^{20}+10}=\dfrac{10\left(10^{20}+1\right)}{10\left(10^{19}+1\right)}=\dfrac{10^{20}+1}{10^{19}+1}=M\)
\(\Rightarrow N< M\)
Cho hai phân số:\(A=\frac{10^{19}+1}{10^{20}+1}\) và \(B=\frac{10^{20}+1}{10^{21}+1}\)
So sánh A và B (trình bày cả lời giải cho mình nhé!)
Do \(B=\frac{10^{20}+1}{10^{21}+1}\)<1
\(\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}\)<\(\frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
\(\Rightarrow\)B<A hay A<B
\(\frac{10^{18}+1}{10^{19}+1}và\) \(\frac{10^{19}+1}{10^{20}+1}\)
SO SÁNH GIÚP VỚI
đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)
ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)
\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)
=> 10A >10B
=> A > B