Chứng minh a)(x+y).(x^2-xy+y^2)=(x+y)^3-3xy.(x+y).
Chứng minh đẳng thức
a) x^3+y^3=(x+y)[(x-y)^2+xy]
b)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
c) ( x+y)(x^2-xy+y^2)=(x+y)^3 - 3xy(x+y)
Chứng minh (x+y)^2.(x^2-xy+y^2) =(x+y)^3-3xy.(x+y)
Lại sai đề nữa, (x+y)(x^2-xy+y^2)=(x+y)^3-3xy(x+y) thì còn được
Chứng minh đẳng thức:
a) (x + y)(x + y)(x + y) - 3xy(x + y) = x3 + y3
b) (x + y)(x2 - xy + y2) - (x - y)(x2 + xy + y2) = 2y3
P/s: Không dùng HĐT, vì cô chưa dạy :(.
a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))
Bài làm :
\(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
=> Điều phải chứng minh
\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\)
=> Điều phải chứng minh
Chứng minh:
a) \(^{x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)}\)
b) \(\left(x+y\right)^3=x^3+3.x^2.y+3xy^2+y^3\)
\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3-y^3=VT\left(đpcm\right)\)
\(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3\)
dễ mà
phần a) dưa vào kết quả tính ra rùi lm ngược lại
còn phần b)thì tách đầu bài thì ra kết quả
a) ta có: x3 + y3 = (x + y) (x2 - xy + y2)
=> x3 + y3 = (x + y) (x2 - xy + y2)
b) ta có: (x + y)3 = x3 + 3x2y + 3xy2 + y3
=> (x + y)3 = x3 + 3x2y + 3xy2 + y3
t i c k nha!! 45654645645767467567476547567562352543645768887907807856
Chứng minh các đẳng thức sau :
a) \(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{xy+y^2}{2x-y}\)
b) \(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)
Chứng minh đa thức
x22+xy+y22=3(x+y/2)2+(x-y/2)2(x+y)(x2-xy+y2)-(x-y)(x22+xy+y2)=2y(x+y)3-(x-y)(x2+xy+y2)=y(3x2+3xy+2y22)Tớ đang cần gấp lắm ạ!
Chứng minh:
(x + y) (x2 - xy + y2) = (x + y)3 - 3xy (x + y)
Ta có :
\(VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=VT\)
\(\RightarrowĐPCM\)
VT = x3 + y3 ( HĐT số 6 )
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y ) = VP
=> đpcm
\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(VT=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2=x^3+y^3\)
Mà \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Ta có đpcm
Chứng minh:
a, (x+y).(x\(^2\)-xy+y\(^2\))=\(x^3\)+\(y^3\)
b, (x+y)\(^3\)= \(x^3+3x^2y+3xy^2+y^3\)
mong m.n giúp đỡ nhiều
a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)
\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)
b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)