Chứng minh 3/4! +3/5! + 3/6! +…+3/100!<1/3
M= 4 + 4 mũ 2 +4 mũ 3 + 4 mũ 4+ ....... + 4 mũ 100 chứng minh M ⋮ 5
https://hoc24.vn/cau-hoi/.2044867324230
làm r
ch P= 1+3+3^2+3^3+3^4+3^5+3^6+3^7
chứng minh p chia hết cho 4
\(P=1+3+3^2+...+3^7\)
\(=\left(1+3\right)+...+\left(3^6+3^7\right)\)
\(=1\left(1+3\right)+...+3^6\left(1+3\right)\)
\(=1\cdot4+...+3^6\cdot4\)
\(=4\cdot\left(1+...+3^6\right)⋮4\)
Đpcm
p=1+3+32+33+34+35+36+37
p=(1+3)+(32+33)+(34+35)+(36+37)
p=4.1+(32.1+32.3)+(34.1+34.3)+(36.1+36.3)
p=4.1+32(1+3)+34(1+3)+36(1+3)
p=4.1+32.4+34.4+36.4
p=4.(1+32+34+36)
vay P chia het cho 4
1,chứng minh rằng:1/3+2/32+3/33+...+100/3100<3/4
Đặt A \(=\) \(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)
=> 3A\(=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
=> 3A- A \(=\) 2A \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt B \(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)=>\(3B=3+1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
=> 2B \(=3-\frac{1}{3^{99}}
A = 5+5^2+5^3+5^4+...+5^99+5^100 chứng tỏ chia hết cho 6
Chứng minh rằng :
100 - ( 1 + 1/2 + 1/3 + .....+ 1/100) = 1/2 + 2/3 + 3/4 + .......+ 99/100
Ta có :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
ta có 100-(1+1/2+1/3+.....+1/100)
=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)
=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)
=1/2+2/3+3/4+.....+99/100
Chứng minh rằng
D= 1/3-2/32+3/33-4/34+..........+99/399-100/3100<3/16
E=1/52-2/53+3/54-4/55+.......+99/5100-100/5101<1/36
F=1/22+1/32+1/42+.......+1/502<1
1.rút gọn
a) \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
b) \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
2.chứng minh rằng số \(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là nghiệm của phương trình \(x^4-16x^2+32\)
3.cho A=\(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)( gồm 100 dấu căn). chứng minh A\(\notin\)N
1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)
\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)
\(=32\)
b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)
Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)
Ta lại có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)
\(\Rightarrow1< A< 2\)
Vậy \(A\notin N\)
Câu 2/ Ta có:
\(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(\Leftrightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(\Leftrightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x^2-4=4-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow\frac{\left(8-x^2\right)}{2}=\sqrt{2+\sqrt{3}}+\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow\frac{\left(8-x^2\right)^2}{4}=8-2\sqrt{3}+2.\sqrt{2+\sqrt{3}}.\sqrt{3.\left(2-\sqrt{3}\right)}=8-2\sqrt{3}+2\sqrt{3}=8\)
\(\Leftrightarrow\left(x^2-8\right)^2=32\)
Ta có:
\(x^4-16x^2+32=\left(x^4-16x^2+64\right)-32\)
\(=\left(x^2-8\right)^2-32=32-32=0\)
Vậy \(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là nghiệm của phương trình đã cho.
1)Chứng minh rằng: 4n + 7/6n +1 là phân số tối giản
2) Cho A=1-1/2+1/3-1/4+...+1/99-1/100
Chứng tỏ:7/12<A<5/6
Làm ơn giải ra giúp mình nha :-)
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Chứng tỏ rằng
1/2×3/4×5/6×7/8×……×99/100<1/10