\(P=1+3+3^2+...+3^7\)
\(=\left(1+3\right)+...+\left(3^6+3^7\right)\)
\(=1\left(1+3\right)+...+3^6\left(1+3\right)\)
\(=1\cdot4+...+3^6\cdot4\)
\(=4\cdot\left(1+...+3^6\right)⋮4\)
Đpcm
p=1+3+32+33+34+35+36+37
p=(1+3)+(32+33)+(34+35)+(36+37)
p=4.1+(32.1+32.3)+(34.1+34.3)+(36.1+36.3)
p=4.1+32(1+3)+34(1+3)+36(1+3)
p=4.1+32.4+34.4+36.4
p=4.(1+32+34+36)
vay P chia het cho 4 ![]()