Cho tam giác cân tại A.Trên AB lấy M,trên tia đối tia CA lấy N sao cho AM+AN=2AB
a)Chứng minh rằng:BM=CN
b)Gọi I là giao điểm của MN và BC.Chứng minh IM=IN
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho AM+AN=2AB. Chứng minh:
a/ BM=CN
b/ BC cắt MN tại trung điểm I của MN
cho tam giac ABC cân tại A.Trên AB lấy I.Qua I kẻ đường thẳng song song với AC cắt BC tại K.a) Chứng minh tam giác IBK cân.b)Trên tia đối của CA lấy M sao cho CM=BI,N là giao điểm của IM và KC.Chứng minh IK=CM,KN=NC.c) Chứng minh 2IN+CM>BM
a: Xét ΔABC có IK//AC
nên IK/AC=BI/AB
mà AC=AB
nên IK=IB
hay ΔIKB cân tại I
b: Xét ΔIKN và ΔMCN có
\(\widehat{NIK}=\widehat{NMC}\)
IK=MC
\(\widehat{IKN}=\widehat{MCN}\)
Do đó; ΔIKN=ΔMCN
Suy ra: IK=CM; KN=NC
c: 2IN+CM=IM+CM>IC
mà IC=BM
nên 2IN+CM>BM
cho tam giac ABC cân tại A.Trên AB lấy I.Qua I kẻ đường thẳng song song với AC cắt BC tại K.a) Chứng minh tam giác IBK cân.b)Trên tia đối của CA lấy M sao cho CM=BI,N là giao điểm của IM và KC.Chứng minh IK=CM,KN=NC.c) Chứng minh 2IN+CM>BM
Mình chỉ giải được câu a thôi nhé
ik//ac=>góc ACB=góc IKB(1)
Do tam giác ABC cân tại A =>góc ABC=góc ACB(2)
từ (1) và (2)=>góc IBK= góc ABC hay góc IKB=góc IBK=>tam giác IBK cân tại I
Bài 1:Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M , trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB . Gọi I là trung điểm của đoạn thẳng MN. Chứng minh rằng ba điểm thẳng hàng B,I,C thẳng hàng
Cho tam giác ABC(AB>AC) . Qua trung điểm M của cạnh BC kẻ đường vuông góc với phân giác trong của góc A , nó cắt các cạnh AB,AC lần lượt tại D và E, biết , AD = b ,CE = c. Tính độ dài đoạn AD,CE theo b và c
Cho tam giác ABC cân tại A. Trên AB lấy M,trên tia đối của CA lấy N sao cho AM+AN=2AB. Gọi I là giao điểm của MN và BC. CMR l là trung điểm của MN
Cho ΔABC cân tại A.Trên cạnh AB lấy điểm E,trên tia đối của tia CA lấy F sao cho CF=BE.Gọi I là giao điểm của EF và BC.Chứng minh rằng IE=IF
Cho ΔABC cân tại A.Trên cạnh AB lấy điểm E,trên tia đối của tia CA lấy F sao cho CF=BE.Gọi I là giao điểm của EF và BC.Chứng minh rằng IE=IF
@danggiabao0
Kẻ `ED` // `AF`
Có `hat{B}`=`hat{C}`(gt)
Do `hat{EDB}`=`hat{C}`(đồng vị)
⇒`hat{EDB}`=`hat{B}`
⇒$ΔEBD$ cân
⇒$EB$=$ED$
Mà $BE$=$CF$
⇒$ED$=$CF$
Xét $ΔEDI$ và $ΔFCI$ có:
`hat{DEI}`=`hat{IFC}`(sole)
$ED$=$CF$(cmt)
`hat{EDI}`=`hat{ICF}`(sole)
⇒$ΔEDI$=$ΔFCI$(g.c.g)
⇒$IE$=$IF$
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên (hai góc tương ứng)
hay
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)
hay \(\widehat{BCA}=\widehat{KCA}\)
Xét ΔCAB vuông tại A và ΔCAK vuông tại A có
CA chung
\(\widehat{BCA}=\widehat{KCA}\)(cmt)
Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)
Suy ra: CA=CK(hai cạnh tương ứng)
Ta có: CN+NK=CK(N nằm giữa C và K)
CM+MB=CB(M nằm giữa C và B)
mà CK=CB(cmt)
và CN=CM(ΔCNI=ΔCMI)
nên NK=MB
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(NK=\dfrac{BC}{2}\)
mà BC=KC(cmt)
nên \(NK=\dfrac{CK}{2}\)
mà điểm N nằm giữa hai điểm C và K
nên N là trung điểm của CK(đpcm)
c) Xét ΔAMB và ΔEMC có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)
mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC vuông tại C,biết B=2A. a, Tính A và B
b,Trên tia đối tia CB lấy điểm D sao cho CD=CB.Chứng minh AD=AB
c,Trên AD lấy điểm M,trên AB lấy điểm N sao cho AM=AN.Chứng minh CM=CN
d,Gọi I là giao điểm của AC và MN,Chứng minh IM=IN và MN song song BD
(Bạn tự vẽ hình giùm)
a/ Ta có \(\widehat{B}=2\widehat{A}\)(1)
và \(\widehat{A}+\widehat{B}=90^o\)(\(\Delta ABC\)vuông tại C) (2)
Thế (1) vào (2), ta có: \(\widehat{A}+2\widehat{A}=90^o\)
=> \(3\widehat{A}=90^o\)
=> \(\widehat{A}=\frac{90^o}{3}=30^o\)
=> \(\widehat{B}=2\widehat{A}=2.30^o=60^o\)
Vậy \(\hept{\begin{cases}\widehat{A}=30^o\\\widehat{B}=60^o\end{cases}}\)
b/ Ta có \(\widehat{BCA}+\widehat{DCA}=180^o\)(kề bù)
=> 90o + \(\widehat{DCA}\)= 180o
=> \(\widehat{DCA}\)= 90o
\(\Delta ABC\)và \(\Delta ADC\) có: Cạnh AC chung
\(\widehat{DCA}=\widehat{BCA}\left(=90^o\right)\)
BC = DC (gt)
=> \(\Delta ABC\)= \(\Delta ADC\)(c. g. c) => AB = AD (hai cạnh tương ứng) (đpcm)
c/ Ta có \(\Delta ABC\)= \(\Delta ADC\)(cm câu b) => \(\widehat{BAC}=\widehat{DAC}\)(hai góc tương ứng)
\(\Delta CNA\)và \(\Delta CMA\)có: NA = MA (gt)
\(\widehat{BAC}=\widehat{DAC}\)(cmt)
Cạnh CA chung
=> \(\Delta CNA\)= \(\Delta CMA\)(c. g. c) => CN = CM (hai cạnh tương ứng) (đpcm)