B = 1/ 1*102 + 1/2*103 + ... +1/299 *400
tính A:B bt A=1/1*300+1/2*301+...+101*400
B=1/1*102+11/2*103+...+1/299*400
tính A/B biết:
A=1/1*300+1/2*301+....+1/101*400
B=1/1*102+1/2*103+...+1/299*400
tính A/B biết :
A=1/1*300+1/2*301+1/3*302+...+1/101*400
B=1/1*102+1/2*103+1/3*104+...+1/299*400
Tính A/B biết rằng:
A=1/1*300 + 1/2*301 + 1/3*302 + ... + 1/101*400
B=1/1*102 + 1/2*103 + 1/3*104 + ... + 1/299*400
1/1×300 + 1/2×301 + 1/3×302 + ..... + 1/101×400
1/1×102+1/2×103+1/3×104 + ........+ 1/299×400
Giúp mình với !!!!!!!!!!
1/101+1/102+1/103+...+1/299+1/300>2/3
Ta có: \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}.200=\frac{2}{3}\Rightarrow A>\frac{2}{3}\Rightarrowđpcm\)
Chứng minh:
1/101+1/102+1/103+...+1/299+1/300>2/3
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Biểu thức có 200 số hạng
Ta có: \(\frac{1}{101}>\frac{1}{300};\frac{1}{102}>\frac{1}{300};...;\frac{1}{299}>\frac{1}{300};\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\)
Vậy....
Ta có : \(\frac{1}{101}>\frac{1}{300}\)
\(\frac{1}{102}>\frac{1}{300}\)
..................
\(\frac{1}{300}=\frac{1}{300}\)
Do đó \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200\cdot\frac{1}{300}=\frac{2}{3}\Rightarrowđpcm\)
chứng tỏ rằng 1/ 101+ 1/102+ 1/103+ 1/104+... + 1/299+ 1/300> 2/3
đừng chép mạng
- Tham khảo ở đây đi : Câu hỏi của Nguyễn Thị Bích Phương - Toán lớp 6 | Học trực tuyến
Đặt A=\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\)
Vì \(\dfrac{1}{101}\)>\(\dfrac{1}{102}\)>\(\dfrac{1}{103}\)>...>\(\dfrac{1}{300}\)
=>(\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{201}\)+\(\dfrac{1}{202}\)+\(\dfrac{1}{203}\)+...+\(\dfrac{1}{300}\)) > (\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+\(\dfrac{1}{200}\)+...+\(\dfrac{1}{200}\))+(\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+\(\dfrac{1}{300}\)+...+\(\dfrac{1}{300}\)) =>\(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) > \(\dfrac{1}{200}\).100 +\(\dfrac{1}{300}\) .100
=> A > \(\dfrac{1}{2}+\dfrac{1}{3}\)
=> A > \(\dfrac{5}{6}\) Mà \(\dfrac{5}{6}\)>\(\dfrac{2}{3}\)=> A > \(\dfrac{2}{3}\) Vậy \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{300}\) >\(\dfrac{2}{3}\)
Tính A/B biết rằng: A= 1/1*300 + 1/2*301 +...+ 1/101*400 B= 1/1*102 + 1/2*103 +...+ 1/298*399 + 1/299*400
\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+...+\dfrac{1}{101.400}\)
\(\Rightarrow299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+...+\dfrac{299}{101.400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)
\(\Rightarrow A=\dfrac{M}{299}\left(1\right)\)
Ta lại có:
\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+...+\dfrac{1}{298.399}+\dfrac{1}{299.400}\)
\(\Rightarrow101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...+\dfrac{101}{399.400}=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...+\dfrac{1}{399}-\dfrac{1}{400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)
\(\Rightarrow B=\dfrac{M}{101}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{A}{B}=\dfrac{M}{299}:\dfrac{M}{101}=\dfrac{101}{299}\)