\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+...+\dfrac{1}{101.400}\)
\(\Rightarrow299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+...+\dfrac{299}{101.400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)
\(\Rightarrow A=\dfrac{M}{299}\left(1\right)\)
Ta lại có:
\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+...+\dfrac{1}{298.399}+\dfrac{1}{299.400}\)
\(\Rightarrow101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...+\dfrac{101}{399.400}=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...+\dfrac{1}{399}-\dfrac{1}{400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)
\(\Rightarrow B=\dfrac{M}{101}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{A}{B}=\dfrac{M}{299}:\dfrac{M}{101}=\dfrac{101}{299}\)