Viết tổng sau dưới dạng luỹ thừa cua 2:
A=22 + 23 + 24 + .… + 2 2018
Cho A=1+2+22+23+24+......+2200.Hãy viết A+1 dưới dạng một lũy thừa
`A=1+2+2^2+2^3+2^4+...+2^{200}`
`=>2A=2+2^2+2^3+2^4+2^5+...+2^{201}`
`=>2A-A=(2+2^2+2^3+2^4+2^5+...+2^{201})-(1+2+2^2+2^3+2^4+...+2^{200})`
`=>A=2^{201}-1`
`=>A+1=2^{201}`
viết tổng sau dưới dạng luỹ thừa của 2:T=2+2^2+2^3+...+2^2008
\(2T=2^2+2^3+2^4+...+2^{2009}\)
\(T=2T-T=2^{2009}-2=2\left(2^{2008}-1\right)\)
T= 2+22+23+...+22008
2T=22+23+24+...+22009
2T-T= 22009-2
T= 22009-2 = (22009-2)1
có bn thì 2^2008 còn có bn 2^2009 ở phần đáp án thế bn nào đúng
viết B=4+22+23+24+...+220 dưới dạng lũy thừa với cơ số 2.
Đổi 4 thành 2 mũ 2
Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r
Dễ:đổi 4=22
B=22+23+24+...+220
ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)
= 221-22
Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá
VIẾT KẾT QUẢ MỖI PHÉP TÍNH SAU DƯỚI DẠNG MỘT LŨY THỪA:
2 x 22 x 23 x 24......................2100
Viết kết quả sau dưới dạng một luỹ thừa :
a) 125^5 : 25^3
b) 27^6 : 9^3
c) 4^20 : 2^15
d) 24^n : 2^2n
e) 64^4. 16^5 : 4^20
\(a,125^5:25^3=\left(5^3\right)^5:\left(5^2\right)^3=5^{15-6}=5^9\)
\(b,27^6:9^3=\left(3^3\right)^6:\left(3^2\right)^3=3^{18-6}=3^{12}\)
\(c,4^{20}:2^{15}=\left(2^2\right)^{20}:2^{15}=2^{40-15}=2^{25}\)
\(d,24^n:2^{2n}=4^n.6^n:4^n=6^n\)
\(e,64^4.16^5:4^{20}=\left(2^6\right)^4.\left(2^4\right)^5:\left(2^2\right)^{20}=2^{24+20-40}=2^4=16\)
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2
Cho A = 1 + 21 + 22 + ... + 22015, viết A + 1 dưới dạng luỹ thừa của 8.
\(A=1+2^1+2^2+...+2^{2015}\)
\(\Rightarrow A=\dfrac{2^{2015+1}-1}{2-1}\)
\(\Rightarrow A=2^{2016}-1\)
\(\Rightarrow A+1=2^{2016}\)
\(\Rightarrow A+1=\left(2^3\right)^{672}\)
\(\Rightarrow A+1=8^{672}\)
Viết các số sau dưới dạng tổng các luỹ thừa của 10:
a) 234
b) 2056
c) 2670
\(234=2\cdot10^2+3\cdot10^1+4\cdot10^0\)
\(2056=2\cdot10^3+5\cdot10^1+6\cdot10^0\)
\(2670=2\cdot10^3+6\cdot10^2+7\cdot10^1\)