Cho Q=3n(n^2+2)-2(n^3-n^2)-2n^2-7n
c/m Q luôn chia hết cho 6 vs mọi số nguyên
Cho Q=3n(n^2+2)-2(n^3-n^2)-2n^2-7n
c/m Q luôn chia hết cho 6 vs mọi số nguyên
Sửa đề: \(Q=3n\left(n^2+2\right)-2\left(n^3-n^2\right)-2n^2-4n\)
\(=3n^3+3n-2n^3+2n^2-2n^2-4n\)
\(=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là 3 số liên tiếp
nên Q chia hết cho 6
Áp dụng quy tắc nhân đa thức với đa thức chúng minh Q luôn chia hết cho 6 với mọi số nguyên
Q= 3n(n^2+2)-2(n^3-n^2)-2n^2-7n
Q=3n3+6n-2n3+2n2-2n2-7n
=n3-n
=n(n2-1)
=(n-1)n(n+1)
Vì n là số nguyên=>n-1;n;n+1 là 3 số nguyên liên tiếp
=>Q chia hết cho 6(đpcm)
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Chứng minh rằng : Với mọi số nguyên n thì \(n^3-3n^2+2n\) luôn chia hết cho 6
\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)
CMR với mọi số nguyên n thì
a, (n^2+3n-1)(n+3)-n^3 +2 chia hết cho 5
b,(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
c,n(n+5)-(n-3)(n+3) luôn chia hết cho 6
Trần Thị Thùy Dung tham khảo đây nha:
Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath
............
Trần Thị Thùy Dungtìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
chứng minh rằng với mọi số nguyên n ta luôn có
a) n.(n+1) chia hết cho 2
b) n.(n+1).n.(n+2) chia hết cho 6
c)n.(n+1).(2n+1) chia hết cho 2
d) n.(2n+1) .(7n+1) chia hết cho 6
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
https://olm.vn/hoi-dap/detail/195347678157.html
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1