Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Chứng minh rằng : Với mọi số nguyên n thì \(n^3-3n^2+2n\) luôn chia hết cho 6
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
1. Tìm n nguyên sao cho
a)\(2n^3+n^2+7n+1\)chia hết cho \(2n-1\)
b) \(n^2+2n-4\)chia hết cho 11
c)\(n^4-2n^3+n^2-2n+1\)chia hết cho \(n^4-1\)
d)\(n^3-n^2+2n+7\)chia hết cho \(n^2+1\)
e)\(n^3-2\)chia hết cho \(n-2\)
f)\(n^3-3n^2-3n-1\)chia hết cho\(n^2+n+1\)
C/m: n^3 + 3n^2 + 2n chia hết cho 6 với mọi số nguyên n
Biểu thức \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)
luôn chia hết cho\(5\)với mọi số nguyên m,n
Tìm số nguyên n sao cho:
a, n2 + 2n - 4 chia hết cho 11
b, 2n3 + n2 + 7n +1 chia hết cho 2n - 1
c, n3 - 2 chia hết cho n - 2
d, n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1
e, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT