Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê huy
Xem chi tiết
Nguyễn Anh Quân
3 tháng 1 2018 lúc 22:01

Xét : a-a^2 = a.(1-a)

Vì a < 1 nên 1-a >0 

Mà a > 0 => a-a^2 = a.(a-1) > 0

=> a > a^2

=> \(\sqrt{a}\)> a ( vì 0 < a < 1 )

=> ĐPCM

Tk mk nha

Hoàng Anh Tuấn
3 tháng 1 2018 lúc 22:01

a<1 => a^2 < a => \(\sqrt{a^2}< \sqrt{a}\Rightarrow a< \sqrt{a}\)

nguyển minh diêp
3 tháng 1 2018 lúc 22:20

xin lổi chị hoặc anh em chỉ học lớp 4 nên không biết về dạng toán này thành thật xin lổi

Đào Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2021 lúc 20:55

Ta có: \(2bd=c\left(b+d\right)\)

a+c=2b

Do đó: \(d\left(a+c\right)=c\left(b+d\right)\)

\(\Leftrightarrow\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{c-a-c}{d-b-d}=\dfrac{-a}{-b}=\dfrac{a}{b}\)

hay \(\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)

Akai Haruma
28 tháng 1 2021 lúc 20:56

Lời giải:

Vì $a+c=2b\Rightarrow d(a+c)=2bd$

Mà $2bd=c(b+d)$ nên $d(a+c)=c(b+d)$

$\Leftrightarrow ad+cd=bc+cd$

$\Leftrightarrow ad=bc\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

Ta Vu Dang Khoa
Xem chi tiết
hong pham
25 tháng 8 2015 lúc 7:38

\(\frac{a}{b}

huy
Xem chi tiết
Hoàng Lê Nam Khánh
Xem chi tiết
OoO Kún Chảnh OoO
25 tháng 1 2016 lúc 15:22

Cach 1  a + c = 2b

=> d(a + c) = 2bd

=> ad + cd = 2bd  (1)

Có: c(b + d) = 2bd

=> cb + cd = 2bd  (2)

(1);(2) => ad + cd = cb + cd

=> ad = cb

=> a/b = c/d

=> đpcm

cach 2 :2bd=c(b+d)=bc+cd
2bd/d=(bc+cd)/d
2b=bc/d+c
mà a+c=2b
nên a+c=bc/d+c
a+c-c=bc/d
a=bc/d
ad=bc
nên a/b=c/d

 

Hoàng Lê Nam Khánh
25 tháng 1 2016 lúc 15:36

Cảm ơn bạn nha!!!!!!!!!!

Mai Linh
Xem chi tiết
Hồ Thị Hải Yến
9 tháng 8 2015 lúc 16:51

 Xét  \(A=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Rightarrow2A=2\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)

\(=\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)

 \(x+y+z\ge0\) ; \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) với mọi  \(x,y,z\)

\(\Rightarrow2A\ge0\)

\(\Rightarrow A\ge0\)

\(\Rightarrow x^3+y^3+z^3\ge3xyz\)

Vậy nếu \(x+y+z\ge0\) thì \(x^3+y^3+z^3\ge3xyz\)

 

dbrby
Xem chi tiết
Thảo Phương
19 tháng 8 2018 lúc 16:05

Biến đổi từ giả thuyết:
a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)

CẦn chứng minh:

2(a4 + b4 + c4) = (a² + b² + c²)²

<=> 2(a4 + b4 + c4) = a^4 + b4 + c4 + 2(a²b² + b²c² + c²a²)

<=> a4 + b4 + c4 = 2(a²b² + b²c² + c²a²)

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)

<=> 8.(ab²c + bc²a + a²bc) = 0

<=> 8abc.(a + b + c) = 0

<=> 0 = 0 (đúng), Vì a + b + c = 0

=> Đpcm

Trường tiểu học Yên Trun...
Xem chi tiết
TRẦN MINH NGỌC
Xem chi tiết
Trương Hoàng Phúc
Xem chi tiết
Cô Hoàng Huyền
11 tháng 11 2016 lúc 14:01

Ta thấy abc = 100a + 10b + c = (98a + 7b) + (2a + 3b + c) = 7(14a + b) + (2a + 3b + c)

Thấy ngay 7(14a + b) chia hết cho 7 nên nếu 2a + 3b + c không chia hết cho 7 thì tổng 100a + 10b + c không chia hết cho 7. Nói cách khác abc không chia hết cho 7.

Nguyen Pham An
11 tháng 11 2016 lúc 14:43

abc=ko chia het cho 7

Nguyễn Minh Tuấn
11 tháng 11 2016 lúc 19:31

ko chia hết cho 7