Có hay không só x,y thỏa mãn đẳng thức sau
x2+xy+y2-3x-3y+3=0
cho 2 số x,y thỏa mãn đẳng thức x²+y²+xy-3x-3y+3 = 0
tính A= (x-2)^101 + (y-2)^102
Có hay không các số x,y thoả mãn dẳng thức sau:
x^2+xy+y^2-3x-3y+3=0
Tồn tại hay không các số x,y,z thỏa mãn đẳng thức : x2+3y2+3x2-2xy-8y-18z+40=0
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
Tìm các số nguyênc: x, y thỏa mãn đẳng thức |(x-y)2 +2(xy+y2-4y)|=xy+y2-4y
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Câu 16. Tìm giá trị lớn nhất của biểu thức:
Câu 17. So sánh các số thực sau (không dùng máy tính):
Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3
Câu 19. Giải phương trình: .
Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 26. Cho các số x và y khác 0. Chứng minh rằng:
Câu 27. Cho các số x, y, z dương. Chứng minh rằng:
Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 29. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
Câu 29:
a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Câu 16. Tìm giá trị lớn nhất của biểu thức:
Câu 17. So sánh các số thực sau (không dùng máy tính):
Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3
Câu 19. Giải phương trình: .
Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 26. Cho các số x và y khác 0. Chứng minh rằng:
Câu 27. Cho các số x, y, z dương. Chứng minh rằng:
Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 29. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)
14,P=x2+xy+y2−3x−3y+3P=(x2+xy+41y2)−3(x+21y)+43y2−23y+3P=(x+21y)2−3(x+21y)+49+43(y2−2y+1)P=(x+21y−23)2+43(y−1)2≥0
thế này nhé bạn nhé
\(4x^2+3y^2-4x+30y+78=0\)
=>\(\left(4x^2-4x+1\right)+3\left(y^2+10y+25\right)+2=0\)
=>\(\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)(vô lý)
=>\(\left(x,y\right)\in\varnothing\)
Giải bất đẳng thức sau
x2+y2 ≥ \(\dfrac{\left(x+y\right)^2}{2}\)≥2xy
Sửa đề:" CM BĐT
x^2+y^2>=(x+y)^2/2
=>2x^2+2y^2-x^2-2xy-y^2>=0
=>(x-y)^2>=0(luôn đúng)(1)
(x+y)^2/2>=2xy
=>(x+y)^2>=4xy
=>(x-y)^2>=0(luôn đúng)(2)
Từ (1), (2) suy ra ĐPCM