6 Thực hiện phép tính
a) x^4.(2x^2-x-1/3) b) (4xy^2-x^3+y^2)-3/4x^2y c ) (3x^3-2xy^3+4y^2).(1/6x^2y^2)
BT9: Thực hiện phép tính
a, xy^2+x^2y+(-2xy^2)
b, 12x^2y^3z^4+(-7x^2y^3z^4)
c, -6xy^3-(-6xy^3)+6x^3
d, -x^2/2+7/2x^2+x
e, 2x^3+3x^3-1/3x^3
f, 5xy^2+1/2xy^2+1/4xy^2
a,
$xy^2+x^2y+(-2xy^2)=xy^2-2xy^2+x^2y=-xy^2+x^2y$
b,
$12x^2y^3z^4+(-7x^2y^3z^4)=12x^2y^3z^4-7x^2y^3z^4=5x^2y^3z^4$
c,
$-6xy^3-(-6xy^3)+6x^3=-6xy^3+6xy^3+6x^3=0+6x^3=6x^3$
d,
$\frac{-x^2}{2}+\frac{7}{2}x^2+x=(\frac{7}{2}-\frac{1}{2})x^2+x$
$=3x^2+x$
e,
$2x^3+3x^3-\frac{1}{3}x^3=(2+3-\frac{1}{3})x^3=\frac{14}{3}x^3$
f,
$5xy^2+\frac{1}{2}xy^2+\frac{1}{4}xy^2=(5+\frac{1}{2}+\frac{1}{4})xy^2$
$=\frac{23}{4}xy^2$
6 Thực hiện phép tính
a) x^4.(2x^2-x-1/3) b) (4xy^2-x^3+y^2)-3/4x^2y c ) (3x^3-2xy^3+4y^2).(1/6x^2y^2)
a: \(=2x^6-x^5-\dfrac{1}{3}x^4\)
b: \(=4xy^2-x^3+y^2-\dfrac{3}{4}x^2y\)
c: \(\left(3x^3-2xy^3+4y^2\right)\cdot\left(\dfrac{1}{6}x^2y^2\right)\)
\(=\dfrac{1}{2}x^5y^2-\dfrac{1}{3}x^3y^5+\dfrac{2}{3}x^2y^4\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
6) Tính a)2xy(3x+1) b)-6x^2y(4x-5) c)-3x^2(4x^2y-6xy) d1/2xy^2(2x+3) e)8x^2y^2(1/4xy-1/2x^2) f)5x(x^2+3x+1) g)-1/2x^2y(2xy+6)
Để tính các biểu thức trên, ta sẽ áp dụng quy tắc nhân đa thức.
a) 2xy(3x+1) = 6x^2y + 2xy
b) -6x^2y(4x-5) = -24x^3y + 30x^2y
c) -3x^2(4x^2y-6xy) = -12x^4y + 18x^3y
d) 1/2xy^2(2x+3) = xy^2 + 3/2xy^2
e) 8x^2y^2(1/4xy-1/2x^2) = 2xy - 4x^2y^2
f) 5x(x^2+3x+1) = 5x^3 + 15x^2 + 5x
g) -1/2x^2y(2xy+6) = -x^3y - 3x^2y
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
1. Tính
a) 2xy(3xy+2xy^2)
b) (2x-1)(x^2+2x+4)-(x^2-3x)*2x
2. Phân tích đa thức thành nhân tử
a) 4x^3y-8x^2y^2+4xy^3
b) 2xy+3xz+6y^2+xz
c) y^2-4x-4xy+4x^2+2y
3. Thực hiện phép chia
(6x^3-7x^2-x+z):(2x+1)
4. Tìm a để đa thức 2x^3+5x^2-2x+a chia hết đa thức 2x^2-x+1
5. Tìm max của biểu thức A=-2x^2+x-z