CM x^2+y^@-2x-2y+3>0,với mọi x,y thuộc R
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Cm
2y-y2+x+x2-5 < 0 vs mọi x,y thuộc R
Biểu thức này ko nhỏ hơn 0 với mọi x,y thuộc R.
Nếu x = 2 và y = 1 thì vế trái bằng 2 > 0
Nếu x = 3 và y = 2 thì vế trái bằng 7 > 0.
Mình nghĩ bạn đang viết đề bài sai đấy.
Cm: M= - x2 - y2 - 2x +2y -3 < 0 Với mọi x,y
\(M=-x^2-y^2-2x+2y-3\)
\(=-\left(x^2+y^2+2x-2y+3\right)\)
\(=-\left(\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+1\right)\)
\(=-\left(\left(x+1\right)^2+\left(y-1\right)^2+1\right)\)
\(=-\left(x+1\right)^2-\left(y-1\right)^2-1\le-1< 0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
CM: p=x+xy+y-2x-3y+2018>0 với mọi x,y thuộc R
Giúp em với ạ!!!
CM: p=x+xy+y-2x-3y+2018>0 với mọi x,y thuộc R
Giúp em với ạ!!!
CMR: \(x^2+2y^2-2xy+2x-4y+3>0\) với mọi x,y ∈ R
\(x^2+2y^2-2xy+2x-4y+3\)
\(=x^2-2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-4y+3\)
\(=\left(x-y+1\right)^2-y^2+2y+1+2y^2-4y+3\)
\(=\left(x-y+1\right)^2+y^2-2y+4\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+3>0\forall x;y\)
a)CMR với mọi x,y thuộc Z thì
S=(x+y)(x+2y)(x+3y)(x+4y)y^4 là số chính phương
b) Cho T=(t-1)(t-3)(t-4)(t-6)+9
1)CM: T lớn hơn hoặc bằng 0 với mọi t
2)T là số chính phương với mọi t thuộc Z
cho x,y,z thuộc R Tm: xy+zy+xz+2x+2y+2z=45 CM: X^2+y^2+z^2>= 27
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)
Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)
Cộng theo vế 2 BĐT (1);(2) ta có:
\(2\left(x^2+y^2+z^2\right)+3\ge45\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)
Khi x=y=z=1
Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)
Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)
Cộng vế với vế của (1); (2) lại ta được :
\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)
Chứng Minh Rằng :
a) x^2 + 2x + 2 > 0 (với mọi x)
b) x^2 + xy^2 + 2×(x + y) + 3 > 0 ( với mọi x )
c) 4x^2 + y^2 + 4xy + 4x + 2y + 2 > 0 ( với mọi x )
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)