viết các biểu thức sau dưới dạng tổng
(3+xy^2)^2
Chứng minh biểu thức sau viết được dưới dạng tổng các bìnhphương hai biểu thức: x^2 +(x+1)^2 + 3(x +2)^2 +4(x +3)^2
\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+x^2+1+3x^2+4+4x^2+9\)
\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)
\(=2x^2+1+3x^2+3+4x^2+9+1\)
Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé
viết biểu dưới dạng sau dưới dạng tổng
(0.01-xy)^2
Bài 1. Viết các biểu thức sau dưới dạng tích
a) x3+8 b) x3-64
c) 27x3+1 d) 64m3-27
Bài 2.Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x+5)(x2-5x+25) b) (1-x)(x2+x+1)
c) (y+3t)(9t2-3yt+y2)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
2)
a)
\(=x^3+125\)
\(\)b)\(=1-x^3\)
c)
=\(y^3+27t^3\)
viết các biểu thức sau dưới dạng tổng áp dụng hằng đẳng thức đáng nhớ
(3+xy^2)^2
(a-b^2)(â+b^2)
(a^2+2a+3)(a^2+2a-3)
(a^2+2a+3)(a^2-2a-3)
giúp mik nha các bn
chứng minh rằng biểu thức sau viết dưới dạng tổng các bình phương của hai biểu thức
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
Viết các biểu thức sau dưới dạng tổng
\(\text{(a^2-2a+3)(a^2+2a-3)}\)
( a2 - 2a + 3 )( a2 + 2a - 3 )
= [ a2 - ( 2a - 3 ) ][ a2 + ( 2a - 3 ) ]
= ( a2 )2 - ( 2a - 3 )2
= a4 - ( 4a2 - 12a + 9 )
= a4 - 4a2 + 12a - 9
\(\left(a^2-2a+3\right)\left(a^2+2a-3\right)\)
\(=a^4+2a^3-3a^2-2a^3-4a^2+6a+3a^2+6a-9\)
\(=a^4-4a^2+12a-9\)
Bài làm:
Ta có: \(\left[a^2-2a+3\right]\cdot\left[a^2+2a-3\right]\)
\(=\left[a^2-\left(2a-3\right)\right]\cdot\left[a^2+\left(2a-3\right)\right]\)
\(=a^4-\left(2a-3\right)^2\)
\(=a^4-4a^2+12a-9\)
Viết các biểu thức sau dưới dạng tổng:
( 1/2 + x ) ^2 ; ( 2x + 1 ) ^2
( 1/2 + x )2 = ( 1/2 )2 + 2.1/2.x + x2 = x2 + x + 1/4
( 2x + 1 )2 = ( 2x )2 + 2.2x.1 + 12 = 4x2 + 4x + 1
Bài1: viết các biểu thức sau dưới dạng tích
a)xy+2y-x^2+4
b)2x^2+y^2+3xy
Bài2: tính giá trị của biểu thức A=(x+y)^2 biết x-y=5 và xy=3
Giúp mình với!!!!
1.a) xy + 2y - x2 + 4
= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )
b) 2x2 + y2 + 3xy
= ( 2x2 + 2xy ) + ( y2 + xy )
= 2x ( x + y ) + y ( x + y )
= ( x + y ) ( 2x + y )
2.
x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31
A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x