a)cmr 1/2!+2/3!+3/4!+...+99/100!<1
b)cmr3/5.2!+3/5.3!+...+3/5.100!<0,6
CMR: A= 1/2-2/2^2+3/2^3-4/2^4+....+99/2^99-100/2^100<2/9
CMR A=1/2-2/2^2+3/2^3-4/2^4+...+99/2^99-100/2^100<2/9
CMR:
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b)1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...+ 99/3^99 -100/3^100 < 3/16
cmr
a) 1/2 -1/4+1/8-1/16+1/32-1/64 <1/3
b) 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
CMR : 1/3 - 2/3^2 + 3^3 - 4/3^4 + .... + 99/3^99 - 100/3^100 < 3/16
CMR : 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100 < 3/16
CMR 1/3-2/3^2+3/3^3-4/3^4+..........+99/3^99-100/3^100<3/16
CMR 1/3-2/3^2+3/3^3-4/3^4+..........+99/3^99-100/3^100<3/16
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>\(\frac{1}{3}.A=\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+...+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)
=>\(A+\frac{1}{3}.A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}+\frac{1}{3^2}-\frac{2}{3^3}+\frac{3}{3^4}-\frac{4}{3^5}+...+\frac{99}{3^{100}}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{3}-\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)-\left(\frac{4}{3^4}-\frac{3}{3^4}\right)+...+\left(\frac{99}{3^{99}}-\frac{98}{3^{99}}\right)-\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
Đặt \(B=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=>\(\frac{1}{3}.B=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(B+\frac{1}{3}.B=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
=>\(\frac{4}{3}.B=\frac{1}{3}-\frac{1}{3^{101}}\)
=>\(B=\frac{1}{3}:\frac{4}{3}-\frac{1}{3^{101}}:\frac{4}{3}\)
=>\(B=\frac{1}{3}.\frac{3}{4}-\frac{1}{3^{101}}.\frac{3}{4}\)
=>\(B=\frac{1}{4}-\frac{1}{3^{100}.4}\)
Lại có: \(\frac{4}{3}.A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=B-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}.4}-\frac{100}{3^{101}}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\left(\frac{1}{3^{100}.4}+\frac{100}{3^{101}}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\left(\frac{1}{3^{100}}.\frac{1}{4}+\frac{1}{3^{100}}.\frac{100}{3}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\left(\frac{1}{4}+\frac{100}{3^{ }}\right)\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\frac{403}{12}\)
Ta thấy: \(\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{3}.\frac{9}{12}=\frac{1}{3}.\frac{3}{4}=\frac{1}{4}\)
=>\(\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{4}\)
=>\(\frac{4}{3}.A=\frac{1}{2}-\frac{1}{3^{100}}.\frac{403}{12}<\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
=>\(\frac{4}{3}.A<\frac{1}{4}=>A<\frac{1}{4}:\frac{4}{3}=>A<\frac{3}{16}\)
=>\(A<\frac{3}{16}\)
Vậy \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)
=))
Dài quá bạn ơi!!!
Mong bạn làm ngắn gọn lại một chút
1/2 ở đâu zậy bạn, phải là 1/4 chứ
CMR:1/3-2/3^2+3/3^3-4/3^4+.......+99/3^99-100/3^100<3/16
CMR 1/3-2/3^2+3/3^3-4/3^4+..........+99/3^99-100/3^100<3/16