Cho biểu thức \(C=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
Chứng minh \(C< \dfrac{3}{16}\)
CMR: \(C=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{99}{3^{99}}+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
1/ Chứng minh: \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\). Chứng minh: C < \(\frac{3}{16}\)
Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh: \(C< \frac{3}{16}\)
tính :1*2-1/2!-3*2-1/3!+3*4-1/4!+...+99*100-1/100!
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
A = 1*2*3+3*4*5+5*6*7+...+99*99*100
Bài 1: Tính:
a)A=3(2^2 + 1) (2^4 + 1) (2^16 + 1)
b)B=-1^2 +2^3 - 3^2 +4^2 -...- 99^2 + 100^2
c) C=-1^2 + 2^2 - 3^2 +4^2 - ... +(-1)^n (n ϵ N*)
1 x 2 x 3 + 2 x 3 x 4 + ..... + 98 x 99 x 100