CHỨNG MINH RẰNG 1.2-1/2!+2.3-1/3!+...+999.1000-1/1000!<2
MONG CÁC BẠN GIÚP
Chứng minh rằng
a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2018}{2019!}< 1\)1
b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{999.1000-1}{1000!}< 2\)
Chứng minh rằng:
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...\dfrac{2018}{2019!}\)<1
b) \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{999.1000-1}{1000!}\)<2
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{2018}{2019!}\\ =\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+...+\left(\dfrac{1}{2018!}-\dfrac{1}{2019!}\right)\\ =1-\dfrac{1}{2019!}< 1\)
b) \(\dfrac{1\cdot2-1}{2!}+\dfrac{2\cdot3-1}{3!}+...+\dfrac{999\cdot1000-1}{1000!}\\ =\dfrac{1\cdot2}{2!}-\dfrac{1}{2!}+\dfrac{2\cdot3}{3!}-\dfrac{1}{3!}+...+\dfrac{999-1000}{1000!}-\dfrac{1}{1000!}\\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{1!}-\dfrac{1}{3!}+\dfrac{1}{2!}-\dfrac{1}{4!}+...+\dfrac{1}{999!}+\dfrac{1}{1000!}\\ =1+1-\dfrac{1}{1000!}\\ =2-\dfrac{1}{1000!}< 2\)
1/1.2 .1/2.3 ... .1/999.1000
Đặt A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/999.1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=999/1000
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{999.1000}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(=1-\dfrac{1}{1000}\)
\(=\dfrac{999}{1000}\)
1/1.2+1/2.3+1/3.4+......+1/999.1000
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}\)
\(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)\)
\(=\frac{1}{1}-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1.2+1/2.3+1/3.4+...+1/999.1000
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/999-1000
=1/1-1/1000
=999/1000
đề = 1 - 1/2 +1/2-1/3 + 1/3-1/4+.....+1/999-1/1000
= 1-1/1000=999/1000
12 /1.2 . 22/2.3 . 32/3.4 ... 9992/999.1000
12 /1.2 . 22/2.3 . 32/3.4 ... 9992/999.1000
= 1.1/1.2 . 2.2/2.3 . 3.3/3.4........... 999.999/999.1000
= 1/2. 2/3 . 3.4.....999/1000
= 1/1000
Tính tổng sau: \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)
Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(A=1-\dfrac{1}{1000}\)
\(A=\dfrac{999}{1000}\)
Chứng minh rằng 1.2-1/2! + 2.3-1/3! + 3.4-1?4! +...+ 99.100-1/100! <2
Cho A= 1/2+1/2^2+1/2^3+1/2^4+1/2^100. Chứng minh rằng A<1
Cho B=2/1.2+2/2.3+2/3.4+...+2/99.100. chứng minh rằng c<2
A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -
( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))
\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1
Vậy: A < 1
\(\frac{1}{2}\)
B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )
= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)
\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2
Vậy: B < 2
tính B =(2016/1000+2016/999+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+....+-1/999.1000)