Chứng minh rằng
a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2018}{2019!}< 1\)1
b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{999.1000-1}{1000!}< 2\)
Tính tổng sau: \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)
Chứng minh rằng 1.2-1/2! + 2.3-1/3! + 3.4-1?4! +...+ 99.100-1/100! <2
tính B =(2016/1000+2016/999+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+....+-1/999.1000)
tinh B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+...+-1/999.1000)
tinh B=(2016/1000 2016/999 2016/998 ... 2016/501)/(-1/1.2 -1/3.4 -1/5.6 ... -1/999.1000)
Chứng minh rằng: \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{3!}+...+\frac{99.100-1}{100!}
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
chứng minh rằng
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+.....+\frac{99.100-1}{100!}<2\)