Tính:
3/2^2 . 8/3^2 . 15/4^2 ..... 899/30^2
Tính nhanh
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
= \(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
= \(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
=\(\dfrac{\left(1.2.3.....29\right).\left(3.4.5......31\right)}{\left(2.3.4......30\right).\left(2.3.4.....30\right)}\)
= \(\dfrac{1.31}{2.30}\)
= \(\dfrac{31}{60}\)
Ta có: \(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}\cdot...\cdot\dfrac{899}{30^2}\)
\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot2^2}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\left(2\cdot3\cdot4\cdot...\cdot30\right)}\)
\(=\dfrac{1\cdot31}{2\cdot30}=\dfrac{31}{60}\)
tính
3/2^2*8/3^2*15/4^2*...*899/30^2
Tính A= 3/22.8/32.15/42...899/302.
tính 3/22.8/32.15/42...899/302
3/2^2 * 8/3^2 * 15/4^2*......*899/30^2
Đặt \(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.......\frac{899}{30^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}........\frac{29.31}{30^2}\)
\(A=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right).....\left(29.31\right)}{2^2.3^2.4^2.....30^2}\)
Để dễ rút gọn,ta viêt tử số của A dưới dạng tích các số tự nhiên liên tiếp:
\(A=\frac{\left(1.2.3.......29.29\right).\left(3.4.5.........30.31\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)........\left(30.30\right)}\)
\(A=\frac{1.2.3.......28.29}{2.3.4.........29.30}.\frac{3.4.5.....30.31}{2.3.4.......29.30}=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Vậy A=31/60
(3/2^2)*(8/3^2)*(15/4^2)*..............*(899/30^2)
Tính \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}....\frac{899}{30^2}\)
tính: Q=3/2^2. 8/3^2. 15/4^2. ... . 899/30^2
\(Q=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.......................\dfrac{899}{30^2}\)
\(\Leftrightarrow Q=\dfrac{1.3.2.4.3.5........29.31}{2.2.3.3......30.30}\)
\(\Leftrightarrow Q=\dfrac{\left(2.3.....29.30\right)\left(3.4.5....29.31\right)}{\left(2.3.4....30\right)\left(2.3.4....30\right)}\)
\(\Leftrightarrow Q=\dfrac{31}{2.30}\)
\(\Leftrightarrow Q=\dfrac{31}{60}\)
A=\(\dfrac{3}{2^2}\)x\(\dfrac{8}{3^2}\)x\(\dfrac{15}{4^2}\)......\(\dfrac{899}{30^2}\)=\(\dfrac{1.3.2.4.3.5....29.31}{2.2.3.3.4.4....30.30}\)= (\(\dfrac{2.3....29.30}{2.3....20.30}\)).(\(\dfrac{3.4.5....29.31}{2.3.4....29.30}\))=\(\dfrac{31}{2.30}\)=\(\dfrac{31}{60}\)
Bài 4: Tính tích:
3/22 x 8/32 x 15/42 ... 899/302
3/22 x8/32 x15/42x...x899/302
=1.3/2.2x2.4/3.3x...x29.31/30.30 xong rồi gạch đi còn
=1/2x31/30=31/60