Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen tu tu
Xem chi tiết
Diệu Vy
13 tháng 12 2016 lúc 21:13

=? như bạn giải rồi đó :)

Từ Nguyễn Đức Anh
14 tháng 12 2016 lúc 12:19

KO CÓ QUI LUẬT À?

Nguyễn Thị Thanh Trúc
9 tháng 11 2021 lúc 9:52

=========================

==========================ko bt 

(  ;-;   )

Khách vãng lai đã xóa
do thanh dat
Xem chi tiết
Hảo
Xem chi tiết
Trần Thị  Vy
15 tháng 8 2021 lúc 9:07

khó vậy 

Khách vãng lai đã xóa
Yêu chị hai
15 tháng 8 2021 lúc 9:08
🤨🤨??????
Khách vãng lai đã xóa
le nhat
Xem chi tiết
Ngyuển Trung Sơn
2 tháng 3 2017 lúc 21:41

??????????????????????????????????????????????

le nhat
2 tháng 3 2017 lúc 22:15

Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!

Ngô Chi Lan
11 tháng 1 2021 lúc 16:42

1.\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{100}}\)

Thấy:\(\frac{1}{2^{100}}>0\Rightarrow1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow A< 1\)

Ta có:\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)=A+100< 1+100=101\)

\(101>\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)\ge100\)

\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(\frac{1}{2^{100}}\right)>\left(\frac{101}{100}\right)^{100}>3\)

*Cách khác:

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)

\(=\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)

Ta thấy:

\(\frac{2+1}{2}>\frac{2^2+1}{2^2}>....>\frac{2^{100}+1}{2^{100}}\)

\(\Rightarrow\frac{2+1}{2}>\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)

Mà \(\frac{2+1}{2}< 3\)

\(\Rightarrow\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}< 3\)

\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)< 3\)

Khách vãng lai đã xóa
Lê Quốc Bình
Xem chi tiết

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)

Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)

ta có dãy số: 1; 2; ....;100

Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)

Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:

A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)

A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)

A = 1

Phùng Thị Minh Nguyệt
Xem chi tiết

a: Ta có công thức tổng quát:

\(1-\frac{1}{1+2+\cdots+n}\)

\(=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}\)

\(=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)

Ta có: \(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\cdot\ldots\cdot\left(1-\frac{1}{1+2+\cdots+2022}\right)\)

\(=\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\cdot\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\cdot\ldots\cdot\frac{\left(2022+2\right)\left(2022-1\right)}{2022\left(2022+1\right)}\)

\(=\frac{4\cdot5\cdot\ldots\cdot2024}{3\cdot4\cdot\ldots\cdot2023}\cdot\frac{1\cdot2\cdot\ldots\cdot2021}{2\cdot3\cdot\ldots\cdot2022}=\frac{2024}{3}\cdot\frac{1}{2022}=\frac{1012}{1011\cdot3}=\frac{1012}{3033}\)

b:Sửa đề: \(B=1+\frac12\left(1+2\right)+\frac13\left(1+2+3\right)+\cdots+\frac{1}{100}\left(1+2+\cdots+100\right)\)

\(=1+\frac12\cdot\frac{2\cdot3}{2}+\frac13\cdot\frac{3\cdot4}{2}+\cdots+\frac{1}{100}\cdot\frac{100\cdot101}{2}\)

\(=1+\frac32+\frac42+\cdots+\frac{101}{2}=\frac12\left(2+3+4+\cdots+101\right)\)

\(=\frac12\left(101-2+1\right)\cdot\frac{101+2}{2}=\frac12\cdot100\cdot\frac{101+2}{2}=103\cdot25=2575\)

Nguyễn ngọc Khế Xanh
Xem chi tiết
Hiếu
Xem chi tiết
soyeon_Tiểu bàng giải
28 tháng 7 2016 lúc 17:34

100 - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

= (1 + 1 + 1 + 1 + ... + 1) - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

             100 số 1                            100 phân số

= (1 - 1) + (1 - 1/2) + (1 - 1/3) + (1 - 1/4) + ... + (1 - 1/100)

= 1/2 + 2/3 + 3/4 + ... + 99/100 ( đpcm)

Sarah
29 tháng 7 2016 lúc 18:15

100 - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

= (1 + 1 + 1 + 1 + ... + 1) - (1 + 1/2 + 1/3 + 1/4 + ... + 1/100)

             100 số 1                            100 phân số

= (1 - 1) + (1 - 1/2) + (1 - 1/3) + (1 - 1/4) + ... + (1 - 1/100)

= 1/2 + 2/3 + 3/4 + ... + 99/100 ( đpcm)

Tam bui thanh
Xem chi tiết
I am➻Minh
Xem chi tiết
kudo shinichi
31 tháng 3 2018 lúc 21:57

bạn tính cái tổng trong ngoặc ra theo công thức là ra