cho a,b,c tùy ý , cmr
4a.(a+b ).(a+1).( a+b+1)+b2 ≥ 0
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh
a2+b2+c2+d2-2ab-2bc-2cd-2da≥- 1/4
Bên dưới có giải thích chi tiết rồi đó em:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là các số thực dương thay đổi tùy ý sao cho a 2 + b 2 + c 2 = 3 . Khoảng cách từ O đến mặt phẳng (ABC) lớn nhất bằng
A. 1 3
B. 3
C. 1 3
D. 1
Đáp án C
Vì OA, OB, OC đôi một vuông góc với nhau 1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2
Với d là khoảng cách từ O -> (ABC) suy ra 1 d 2 = 1 a 2 + 1 b 2 + 1 c 2
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c
Vậy d m a x = 1 3
cho a b c khác 0 và p q tùy ý chứng minh rằng phương trình sau luôn có nghiệm a2/x-p +b2/x-q=c
Cho tam giác ABC. CMR:
1. Với M tùy ý thì aMA2+bMB2+cMC2≥abc
2. 2(a+b+c)(a2+b2+c2) ≥3 (a3+b3+c3+3abc)
1. Ta sẽ chứng minh dựa trên các kết quả quen thuộc sau về tâm I của đường tròn nội tiếp tam giác:
\(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
Và: \(a.IA^2+b.IB^2+c.IC^2=abc\)
Đẳng thức thứ nhất chỉ cần dựng hình bình hành AMIN, sau đó sử dụng định lý phân giác các góc B và C.
Đẳng thức thứ hai ta chỉ cần lấy 1 điểm P nào đó đối xứng I qua AC, gọi D, E, F là tiếp điểm của (I) với BC, AC, AB, sau đó sử dụng tỉ lệ diện tích:
\(\dfrac{S_{AEIF}}{S_{ABC}}=\dfrac{S_{AIK}}{S_{ABC}}=\dfrac{AI.AK}{AB.AC}=\dfrac{IA^2}{bc}\)
Tương tự và cộng lại ...
Từ đó:
\(a.MA^2+b.MB^2+c.MC^2=a.\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+b\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+c.\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)
\(=\left(a+b+c\right)MI^2+a.IA^2+b.IB^2+c.IC^2+2\overrightarrow{MI}\left(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\)
\(=\left(a+b+c\right)MI^2+abc\ge abc\)
Dấu "=" xảy ra khi \(MI=0\) hay M là tâm đường tròn nội tiếp
2. Do a;b;c là độ dài 3 cạnh của tam giác, thực hiện phép thế Ravi:
Đặt \(\left(a;b;c\right)=\left(x+y;y+z;z+x\right)\)
BĐT cần chứng minh tương đương:
\(4\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\ge3\left(x^3+y^3+z^3+3xyz+xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
Đây là BĐT Schur bậc 3
Tính (a - b)(a2 + ab + b2 ) (với a, b là hai số tùy ý).
(a - b)(a2 + ab + b2 ) = a(a2 + ab + b2 ) - b(a2 + ab + b2 )
= a3 + a2 b + ab2 - ba2 - ab2 - b3
= a3 - b3
Tính (a + b)(a2 – ab + b2) (với a, b là hai số tùy ý).
(a + b)(a2 – ab + b2 ) = a(a2 – ab + b2 ) + b(a2 – ab + b2 )
= a3 – a2b + ab2 + ba2 – ab2 + b3
= a3 + b3
cho a lớn hơn b và c tùy ý. Khẳng định nào sau đây đúng?
A. a/c lớn hơn b/c (c khác 0)
B. a2 lớn hơn b2
C. 1/a bé hơn 1/b
D. a-c lớn hơn b-c
giải thích giúp mình luôn ạhh
cảm ơn
1) Cho a,b là 2 số nguyên khác 0. CMR: (a,a+b)=(a,b)
2)Cho a là số nguyên khác 0 tùy ý. Hãy xác định [a,a+2]
ngực to mà bóp thì phê hết múc luôn
cho a,b,c khác 0 ; a+b+c=0 tính a=1/(a2+b2-c2)+1/(b2+c2-a2)+1/(a2+c2-b2)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
tvbobnokb' n
iai
ni;bv nn0