Chứng minh rằng:
(x-1)(x-2)(x-3)(x-4) lớn hơn hoặc bằng -1
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
cho x,y thuộc (0:1)
chứng minh rằng (1 + x )2 lớn hơn hoặc bằng 4x2
chứng minh rằng (1 + x + y)2 lớn hơn hoặc bằng 4(x2+y2)
1/
Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$
$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$
$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$
2/
Xét hiệu:
$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$
$=1+2x+2y+2xy-3x^2-3y^2$
$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên:
$2x(1-x)>0$
$2y(1-y)>0$
$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$
$\Rightarrow 1+xy-x^2-y^2>0$
$\Rightarrow 1+2xy-x^2-y^2>0$
Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$
$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$
Chứng minh rằng:
\(\dfrac{x^2+x+3}{\sqrt{x^2+x+3}}+\dfrac{1}{\sqrt{x^2+x+3}}\)lớn hơn hoặc bằng 2;
b, C/m rằng:
\(\dfrac{x^2+x+7}{\sqrt{x^2+x+3}}\)lớn hơn hoặc bằng 4
Giúp mình nha...........
a: Đặt \(\sqrt{x^2+x+3}=a\)
Ta sẽ có \(\dfrac{a^2}{a}+\dfrac{1}{a}=a+\dfrac{1}{a}\ge2\cdot\sqrt{a\cdot\dfrac{1}{a}}=2\left(đpcm\right)\)
b: Đặt \(\sqrt{x^2+x+3}=b\)
Ta sẽ có \(\dfrac{b^2+4}{b}=b+\dfrac{4}{b}\ge2\cdot\sqrt{b\cdot\dfrac{4}{b}}=4\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng : 1/1+x mũ 2 + 1/1+y mũ 2 lớn hơn hoặc bằng 2/1+xy
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
có x>0 , y>0 , chứng minh rằng (x+y)((1/x)+(1/y)) lớn hơn hoặc bằng 4.
với x>0 chứng minh rằng x+1/2 lớn hơn hoặc bằng 2
HELP ME : Chứng minh rằng với x và y > 0 thì 1/x + 1/y lớn hơn hoặc bằng 4/(x+y)
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm