Cho tam giác ABC ( AB< AC ) đường phân giác AD. Hạ BE, CF cùng vuông góc với AD.
a) CM tam giác BED đồng dạng với tam giác CFD
b) CM AB.AF=AC.AE
c) Gọi S là giao điểm của CE và BF. CM AS vuông góc với AF
d) CM AB.AC=AE.AF+BE.CF
) Cho tam giác ABC ( AB< AC ) đường phân giác AD. Kẻ BE, CF cùng vuông góc với AD.
a) CM tam giác BED đồng dạng với tam giác CFD
b) CM AB.AF=AC.AE
c) Gọi S là giao điểm của CE và BF. Chứng minh AS vuông góc với AF
Em tự vẽ hình nhé
a) Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\);
\(\widehat{BDE}=\widehat{CDF}\) (đối đỉnh)
\(\Rightarrow\Delta BED\sim\Delta CFD\) (g.g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC\:}=90^0\);
\(\widehat{BAE}=\widehat{CAF}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE\sim\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\)
c) Do \(BE//FC\) (cùng vuông góc \(AD\))
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{BE}{FC}\) mà \(\dfrac{BE}{FC}=\dfrac{BD}{CD}\) (do \(\Delta BED\sim\Delta CFD\))
Lại có \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (tính chất tia phân giác); \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (câu b)
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{AE}{AF}\Rightarrow SA//BE\) (ĐL Ta-let đảo)
\(\Rightarrow SA//CF\Rightarrow SA\perp AF\)
Cho tam giác ABC, các đường phân giác AD, BE, CF. Gọi M là giao của BE và DF, N là giao của DE và CF a) Kẻ MI và NK sống song với AD ( I thuộc AB, K thuộc AC) Cm tam giác AIM đồng dạng với tam giác AKN b) Cm góc FAM = góc EAN
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
cho tam giác ABC có ba góc nhọn,các đường cao AD,BE,CF cắt nhau tại H
A , cm tam giác BDA đồng dạng tam giác BFC
B, cm tam giác AEF đồng dạng ABC
C, cm AH.AD+CH.CF=AC^2
D, Gọi M,N,P,Q lần lượt là chân các đường vuông óc hạ từ D xuống AB,BE,CF,AC cm bốn điểm M,N,P,Q cùng nằm trên một đường thẳng
MỌI NGƯỜI GIÚP MK VỚI TẠI MK CẦN CÁI NÀY GẤP Ạ
a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co
góc B chung
=>ΔBDA đồng dạng vói ΔBFC
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng vói ΔACB
c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng vói ΔADC
=>AD*AH=AE*AC
Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng vói ΔCFA
=>CH*CF=CE*CA
=>AH*AD+CH*CF=CA^2
Bài 1:cho tam giác ABC có AB<AC , AD là tia phân giác. trên AC lấy điểm E sao cho AE=AB.
cm a, tam giác ABD=tam giác AED.
b,trên tia AB lấy điểm F sao cho AF=AC.cm góc FBD= góc CED.
c, AD vuông góc với CF
d, DF=DC
e,BE song song với CF
f,3 điểm F,D,E thẳng hàng
Bài 2: cho tam giác ABC có góc A = 90 độ BD là phân giác của góc B( D thuộc AC. vẽ DE vuông góc với BC. gọi E là giao điểm của AB và AE.
a, cm tam giác ABD= tam giác EBD.
b, cm BD vuông góc với AE tại trung điểm AE
c, cm tam giác DCF cân
d, khi tam giác ABC có góc B=60 độ, BC=12 cm . tính DC
giúp mk nha cảm ơn các bn
Cho tam giác ABC (AC > AB). AD là phân giác trong. Qua C kẻ tia Cx nằm khác phía với CA, bờ CB sao cho góc BCx = góc BAD. Gọi giao điểm của tia AD và Cx là E.
a, CM: tam giác DCE đồng dạng với tam giác DAB
b, CM: AB.AC = AD^2 + DB.DC
c, Hạ đường cao EH của tam giác EAC. Gọi G đối xứng với C qua EH. CM B đối xứng G qua AE
Cho tam giác ABC nhọn, có 2 đường cao BD,CE cắt nhau tại H
a) Cm tam giác DAB đồng dạng tam giác EAC và EA*AB=AD*AC
b) Cm tam giác EBH đồng dạng tam giác DCH và tam giác HED đồng dạng tam giác HBC
c) Gọi F là giao điểm của AH,BC, K là trung điểm AH. Cm BF*CF=KF2-KD2
d) Cm FH là phân giác của góc EFD
cho tam giác ABC vuông tại B vẽ đường phân giác AD . từ D kẻ DE vuông góc với AC
a) CM : ad là đường trung trực của BE
b) gọi F là giao điểm của DE và AB . CM tam giác ADF= tam giác ADC
c) Gọi M là trung điểm của FC . CM :MB=MF
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔAEF vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
Xet ΔADF và ΔADC có
AD chung
góc DAF=góc DAC
AF=AC
=>ΔADF=ΔADC
c: ΔCBF vuông tại B
mà BM là trung tuyến
nên MB=MF
cho tam giác ABC góc A=90 độ đường cao AH, phân giác BD (D thuộc AC)
a) CM tam giác BAH đồng dạng với tam giác BCA và góc BAH =góc BAC b,gọi I là giao điểm của AH và BD CM: BI.BC=BA.BD
c, kẻ CE vuông góc BD cắt BA tại M .CM: AI song song với MD và BA.BM+CE.CM=BC^2
mn ơi cứu mik với mik
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng vói ΔBCA
b: Xét ΔBAD và ΔBHI có
góc BAD=góc BHI
góc ABD=góc HBI
=>ΔBAD đồng dạng vói ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BH*BD