Cho tam giác ABC (AC > AB). AD là phân giác trong. Qua C kẻ tia Cx nằm khác phía với CA, bờ CB sao cho góc BCx = góc BAD. Gọi giao điểm của tia AD và Cx là E.
a, CM: tam giác DCE đồng dạng với tam giác DAB
b, CM: AB.AC = AD^2 + DB.DC
c, Hạ đường cao EH của tam giác EAC. Gọi G đối xứng với C qua EH. CM B đối xứng G qua AE
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
cho tam giác ABC có ba góc nhọn,các đường cao AD,BE,CF cắt nhau tại H
A , cm tam giác BDA đồng dạng tam giác BFC
B, cm tam giác AEF đồng dạng ABC
C, cm AH.AD+CH.CF=AC^2
D, Gọi M,N,P,Q lần lượt là chân các đường vuông óc hạ từ D xuống AB,BE,CF,AC cm bốn điểm M,N,P,Q cùng nằm trên một đường thẳng
MỌI NGƯỜI GIÚP MK VỚI TẠI MK CẦN CÁI NÀY GẤP Ạ
Cho tam giác ABC nhọn, có 2 đường cao BD,CE cắt nhau tại H
a) Cm tam giác DAB đồng dạng tam giác EAC và EA*AB=AD*AC
b) Cm tam giác EBH đồng dạng tam giác DCH và tam giác HED đồng dạng tam giác HBC
c) Gọi F là giao điểm của AH,BC, K là trung điểm AH. Cm BF*CF=KF2-KD2
d) Cm FH là phân giác của góc EFD
cho tam giác ABC góc A=90 độ đường cao AH, phân giác BD (D thuộc AC)
a) CM tam giác BAH đồng dạng với tam giác BCA và góc BAH =góc BAC b,gọi I là giao điểm của AH và BD CM: BI.BC=BA.BD
c, kẻ CE vuông góc BD cắt BA tại M .CM: AI song song với MD và BA.BM+CE.CM=BC^2
mn ơi cứu mik với mik
Cho tam giác ABC nhọn , các đường cao AD,BE,CF cắt nhau tại H
a)CM : điểm H cách đều 3 cạnh tam giác DEF
b, gọi Q là giao điểm của AD và EF
CM : HQ.AD = AQ.HD
c)CM : BE.CF + AE.AF = AB.AC
Cho tam giác nhọn ABC (AB<AC) có đường cao AH. Tù H kẻ HM vuông góc vớ AB tại M, N vuông góc với AC tại N.
a) CMR ta giác HAB đồng dạng với tam giác MAH
CMR tam giác HAC đồng dạng với tam giác NAH
b) CM AM.AB=AH^2 và AM.AB=AN.AC
c) CM tam giác AMN đồng dạng với tamm giác ACB.
d) Gọi I là giao điểm của AH và MN. CM IA.MH=IM.AN
e) Gọi K là giao điểm của BC. CM AK vuông góc với IN.
cho tam giác ABC vuông tại A, đường cao AH. Từ H vẽ HI vuông góc với AB tại I và HK vuông góc với AC tại K. Gọi AD là trung tuyến của tam giác ABC.
a, CM: tam giác ABC đồng dạng với tam giác HAC
b, CM: tứ giác AIHM là hình chữ nhật
c, CM: AB.AI = AC.AK
d, CM: AD vuông góc với IK
giúp tui vs
cho tam giác abc cân tại a (ab<ac) và d là trung điểm của bc. từ d vẽ đường thẳng vuông góc với bc cắt ac tại e.
a) cm tam giác dec đồng dạng với tam giác abc
b) đường vuông góc với bc kẻ từ b cắt ca tại f. cm bf^2=fa.fc
c) gọi I là trung điểm của ab. chứng minh tam giác fib đồng dạng với tam giác fdc
d) hai đường thẳng fi và ed giao tại m. chứng minh mc vuông góc với fc