Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bắc Nguyễn Việt
Xem chi tiết
Nguyễn Thị Bích Ngọc
8 tháng 4 2016 lúc 16:13

Bn thấy đề bài cho cmr n+3 và 2n+5 là 2 số nguyên tố cùng nhau đúng ko ? mà 2 số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất = 1 . Ta chỉ cần chứng minh ƯCLN(n+3 ; 2n+5)=1

Giải : 

Gọi ƯCLN(n+3 ; 2n+5 ) = a 

=> n+3 : a(dấu chia hết)

=> 2.(n + 3 ) : a

( dùng tính chất phân phối giữa phép nhân và phép cộng a(b+c) = a nhân b + a nhân c, ta có :

=>2n +  6 : a 

=> (2n + 6) - (2n + 5) : a 

= 2n + 6 - 2n - 5  :a ( bn thấy 2n - 2n = 0 , 6 - 5 = 1 ) * tớ đổi được cái (2n + 6) - (2n + 5 ) = 2n + 6 - 2n - 5 vì bn thấy đằng trước 2n + 5 là dấu trừ nên ta phải đổi dấu tất cả số hạng trong ngoặc ( Đúng ko ?)

=>  1 : a ( a trong trường hợp này là ước chung , mà 1 có ước chung lớn nhất là 1 ) 

=> a = 1 ( mà a là ước chung lớn nhất của n + 3 và 2n + 5 ; a = 1  )

Vì ƯCLN(n + 3; 2n + 5 ) = 1 nên n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau 

CHú ý : Bn chỉ cần làm cho mất số tự nhiên n đi là được 

VD : CMR n+5 và 3n + 16  là 2 số nguyên tố cùng nhau  

Ta chỉ cần nhân (n + 5 ) với 3 = 3n + 15 (mà 3n + 16  cũng có 3n ) trừ để mất đi là được 

Bn hiểu chưa ? 

Le Nhat Phuong
Xem chi tiết
#❤️_Tiểu-La_❤️#
16 tháng 8 2017 lúc 13:46

Gọi d = ƯCLN ( 5n+6 ; n+1 )

=> \(5n+6⋮d;n+1⋮d\)

=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)

=> \(5n+6⋮d;5n+5⋮d\)

=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)

=> \(5n+6-5n-5⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> ƯCLN ( 5n+6 ; n+1 )  = 1

=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )

Vậy bài toán được chứng minh !

              Cbht ❤️

nguyễn thị hiệp
16 tháng 8 2017 lúc 13:50

Đặt ƯCLN(5n+6,n+1)=d

Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)

                                                       mà: \(5n+6⋮d\)

\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)

Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1 

=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)

Le Nhat Phuong
16 tháng 8 2017 lúc 13:52

Gợi ý:

Gọi ƯCNL \('5n+6,n+1'=d\Rightarrow'5n+6'⋮d;'n+1'⋮d\)

Ta có, \(5n+6=5'n+1'+1\) 

Vì \(5'n+1'⋮d\) nên suy ra \(1⋮d\Rightarrow d=1\)

Vậy 5n + 6 và n + 1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n 

le nguyen quynh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 7 2018 lúc 4:40

Gọi d là ước chung của n + 1 và 3n + 4.

Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d

Lại có: 3n + 4 ⋮ d.

Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d

Do đó, d = 1.

Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.

Quang Anh
Xem chi tiết
ST
14 tháng 11 2016 lúc 10:43

Gọi d là ƯCLN(n+3,2n+5)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n + 6) - (2n + 5) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

=> ƯCLN(n+3,2n+5) = 1

=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau

Quang Anh
Xem chi tiết
Quang Anh
14 tháng 11 2016 lúc 10:29

giúp mình với mình đg gấp lắm

 

 

Isolde Moria
14 tháng 11 2016 lúc 10:43

Gọi d là ƯC(n+3;2n+5)

=> 2(n+3) - (2n+5) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ........

Phạm Phương Anh
14 tháng 11 2016 lúc 10:48

Gọi d là UCLN của n + 3 và 2n + 5

=> n + 3 chia hết cho d và 2n + 5 chia hết cho d

Vì n + 3 chia hết cho d nên 2(n+3) chia hết cho d => 2n + 6 chia hết cho d

Vì 2n + 6 chia hết cho d , 2n + 5 chia hết cho d

=> 2n + 6 - (2n+5) chia hết cho d

=> 1 chia hết cho d

Mà d lớn nhất nên d = 1

Vì UCLN của n + 3 và 2n + 5 bằng 1 nên n + 3 và 2n+ 5 là 2 số nguyên tố cùng nhau

tran duc duan
Xem chi tiết
Nguyễn Hà My
17 tháng 2 2018 lúc 11:45

Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.

Đỗ Ngọc Hải
17 tháng 2 2018 lúc 11:49

Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha

nguyễn thị thảo vân
Xem chi tiết
Trâm Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2024 lúc 7:51

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy n+1 và 2n+3 nguyên tố cùng nhau với mọi \(n\in N\)