A=1/2+1/6+1/12+1/20+...+1/90( tính giá trị biểu thứ bằng cách hợp lý)
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
Tính bằng cách hợp lý
bn vào link này nhé:https://olm.vn/hoi-dap/detail/49652619071.html
A = \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\frac{8}{9}\)
= \(-\frac{79}{90}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(A=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(A=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(A=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(A=\frac{1}{90}-\frac{8}{9}\)
\(A=\frac{1}{90}-\frac{80}{90}\)
\(A=-\frac{79}{90}\)
Nguồn :Câu hỏi của Nguyễn Thị Bích Vân - Toán lớp 7 - Học toán với OnlineMath
_Minh ngụy_
Tính bằng cách hợp lý
A, 5,4 + 6,5 + 7,6 + 8,7 - 4,4 - 5,5 - 6,6 - 7,7
B, 1/2+ 1/6 + 1/12 + 1/20+1/30+1/42+1/56+1/72+1/90
a) = ( 5,4 - 4,4 ) + ( 6,5 - 5,5 ) + ( 7,6 - 6,6 ) + ( 8,7 - 7,7 )
= 1 + 1 + 1 + 1
= 4
b) = 9/10
Bài 1: Tính giá trị biểu thức (bằng cách hợp lý nếu có thể). 1. 2 a) 2-+ 2 5 42-:(-15 b) 6. (-1 6. -4 5 -12 4 4 c) 13 17 13 17 13 d) 2' +3. .8
Bài 1 : Tính nhanh :
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 = ?
Bài 2 : Tính giá trị của biểu thức dưới đây = cách hợp lý :
19/13 + 14/6 + 1/9 + 4/6 + 7/13 + 17/9 = ?
a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\) (dấu chấm là dấu nhân)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
b) \(\frac{19}{13}+\frac{14}{6}+\frac{1}{9}+\frac{4}{6}+\frac{7}{13}+\frac{17}{9}\)
\(=\left(\frac{19}{13}+\frac{7}{13}\right)+\left(\frac{14}{6}+\frac{4}{6}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)\)
= 2 + 3 + 2
= 7
1) Tính bằng cách hợp lý nhất :
a) \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
a) 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/10.9 - 1/9.8 - 1/8.7 - 1/7.6 - 1/6.5 - 1/5.4 - 1/4.3 - 1/3.2 - 1/2.1
= 1/10 - 1
= 0,1 - 1
= -0,9
Ta đặt A=\(-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(\Rightarrow A=-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)= \(-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
= - \(\left(1-\dfrac{1}{10}\right)=-\left(\dfrac{10-1}{10}\right)=-\dfrac{9}{10}\)
Ta có: \(-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{1}{10}+1\right)\)
\(=-\left(1-\dfrac{1}{10}\right)\)
\(=-\left(\dfrac{10}{10}-\dfrac{1}{10}\right)=-\dfrac{9}{10}\)
tính giá trị các biểu thức sau một cách hợp lý
B=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-.....-\frac{1}{6}-\frac{1}{2}\)
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)
\(-B=\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\)
\(-B=\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(-B=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\)
\(-B=\frac{1}{10}-1\)
\(-B=\frac{9}{10}\)
=> \(B=\frac{-9}{10}\)
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=-\frac{79}{90}\)
Thực hiện phép tính một cách hợp lý:
A= -1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
Tính giá trị biểu thức A= 1 2 + 1 6 + 1 12 + 1 20 + . . . + 1 90 12+16+112+120+...+190 ta được kết quả A=...