Tìm các số nguyên x và y thỏa mãn: x2+2y2+3xy+2x+2y-3=0
Tìm tất cả các bội số nguyên (x;y) thỏa mãn phương trình:
a) x2 - 2x + 2y2 = 2(xy +1)
b) x2 + 2y2 + 2xy - 2x = 7
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Cho hai số x và y thỏa mãn x2+2y2-3xy=0 và x>y>0.
Tính GTBT: A=\(\dfrac{6x+16y}{5x-3y}\)
\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))
\(\Leftrightarrow x=2y\)
\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Tìm các số nguyên x, y thỏa mãn đẳng thức:
2x2+y2+3xy+3x+2y+2=0
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
Tìm x,y là số nguyên thỏa mãn: 3xy - 5 = x2 + 2y
Theo đề ra,ta có:
\(3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\left(1\right)\)
Do x,y nguyên nên \(x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2+45⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{49;7;1;-7;-1;-49\right\}\)
\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)
\(\Rightarrow x\in\left\{1;3;7\right\}\)vì \(x\in Z\)
Với \(x=1\)thay vào \(\left(1\right)\),ta được y=6
Tương tự thì với \(x=3\Rightarrow y=2;x=7\Rightarrow y=6\)
Vậy các cặp số \(\left(x;y\right)\)thỏa mãn điều kiện trên là:\(\left(1;6\right);\left(3;2\right);\left(7;6\right)\)
P/S:bài giải dài,nếu không có gì sai sót quá nghiêm trọng thì mong mọi người bỏ qua cho.
Ta có:3xy-5=x\(^2\) +2y
⇒3xy-2y=x \(^2\)+5 (1)
Vì x,y là số nguyên nên:x\(^2\) +5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2 9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2 ∈ (49;-49;7;-7;1;-1)
<=>3x ∈ (51;-47;9;-5;3;1)
<=>x ∈ (1;3;17)
Thay x lần lượt vào (1) ta được y=6 hoặc y=2
Vậy y=2 hoặc y=2
p/s : kham khảo
Ta có:3xy-5=x2+2y
⇒3xy-2y=x2+5 (1)
Vì x,y là số nguyên nên:x2+5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2
9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2 ∈ (49;-49;7;-7;1;-1)
<=>3x ∈ (51;-47;9;-5;3;1)
<=>x ∈ (1;3;17)
Thay x lần lượt vào (1) ta được y=6 hoặc y=2
Vậy y=2 hoặc y=2
Tìm các cặp số nguyên thỏa mãn
x2+2y2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow\left(x^2-3xy+\frac{9}{4}y^2\right)+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{4}y^2+y+1\right)+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y\right)^2+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{2}y+1\right)^2+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{1}{2}y+1\right)^2=-3\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1-\frac{1}{2}y-1\right)\left(x-\frac{3}{2}y+1+\frac{1}{2}y+1\right)=-3\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y+2\right)=-3\)
Đến đây tự làm ( Dễ )