\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))
\(\Leftrightarrow x=2y\)
\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)
\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))
\(\Leftrightarrow x=2y\)
\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
Cho các số x, y thỏa mãn:
2x+3y=13. Tính GTNN của Q= x2 +y2
cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức A=x+y
Cho x,y,z khác 0 và A=\(\dfrac{y}{z}\)+\(\dfrac{z}{y}\) ; B=\(\dfrac{x}{z}+\dfrac{z}{x}\); C=\(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính giá trị biểu thức : A2+B2+C2-ABC
Cho 3 số thực x,y,z thỏa mãn điều kiện x+y+z=0 và
xyz không bằng 0 Tính giá trị biểu thức:
P=x^2/y^2+z^2-x^2 + y^2/z^2+x^2-y^2 + z^2/x^2+y^2-z^2
cho x và y là hai số thực thỏa mãn x+y=1
tìm GTNN của P=x^3+y^3+xy.
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
Thực hiện phép tính :
a/ (x - 1)^2 - (4x + 3) (2 - x)
b/ (15x^3y^2 - 6x^2y^3) : 3x^2y^2 = (15x^3y^2 : 3x^2y^2) - (6x^2y^3 : 3x^2y^2) = 5x - 2y
c/\(\dfrac{x+7}{x-7}\) - \(\dfrac{x-7}{x+7}\) +\(\dfrac{4x^2}{x^2-49}\)
Bài 1: Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0,\) \(abc=36\)
Hãy tính \(Q=\dfrac{a^2\left(b^2+c^2\right)-b^2c^2}{a^6}.\dfrac{b^2\left(c^2+a^2\right)-c^2a^2}{b^6}.\dfrac{c^2\left(a^2+b^2\right)-a^2b^2}{c^6}\)
Bài 2: Cho đa thức \(f(x)=6x^5-10x^4-5x^3+23x^2-29x+2005\). Hãy tính \(f(a)\) biết \(3a^2-5a=1\)
Bài 3: Tìm tất cả cặp số x,y dương thỏa mãn: \(x^3+y^3-9xy=0\)
Bài 4: Tìm x: \(x^4+2x-25=0\)