Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
trang nguyen
Xem chi tiết
phạm lê xuân Ánh
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lê Nguyễn Phương Uyên
30 tháng 7 2023 lúc 15:54

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 15:49

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 18:23

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

Địt mẹ mày
5 tháng 2 2021 lúc 14:11

Mày N Mày Chết M Mày Đi Kêu Cặk

Thanh Thúy Trần
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:26

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Linh nguyễn
Xem chi tiết

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD

Linh nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 13:14

a.

Xét tứ giác ADBK có: hai đường chéo AB và DK cắt nhau tại trung điểm M của mỗi đường

\(\Rightarrow ADBK\) là hình bình hành

Do ABCD là hình chữ nhật \(\Rightarrow AB\perp BC\Rightarrow AB\) là đường cao tam giác ACK

Theo cmt, ADBK là hbh \(\Rightarrow BK=AD\)

Mà \(AD=BC\) (ABCD là hcn)

\(\Rightarrow BK=BC\Rightarrow AB\) là trung tuyến tam giác ACK

\(\Rightarrow AB\) vừa là đường cao vừa là trung tuyến nên tam giác ACK cân tại A

b.

Do IE là phân giác, áp dụng định lý phân giác trong tam giác IAM:

\(\dfrac{EM}{EA}=\dfrac{IM}{IA}\) (1)

Do IF là phân giác, áp dụng định lý phân giác trong tam giác IMK:

\(\dfrac{FM}{FK}=\dfrac{IM}{IK}\) (2)

Mà I là trung điểm AK \(\Rightarrow IA=IK\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{EM}{EA}=\dfrac{FM}{FK}\Rightarrow EF||AK\) (định lý Talet đảo)

Theo c/m câu a do ADBK là hình bình hành \(\Rightarrow AK||BD\)

\(\Rightarrow EF||BD\)

Nguyễn Việt Lâm
13 tháng 1 lúc 13:14

loading...

Lê Anh Tuấn
Xem chi tiết