Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hung Nguyen
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 11 2023 lúc 20:13

`#3107.101107`

\(B=4+4^2+4^3+...+4^{89}+4^{90}\)

\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)

\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)

\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)

\(=21\left(4+4^{88}\right)\)

Vì \(21\left(4+4^{88}\right)\) `\vdots 21`

`\Rightarrow B \vdots 21`

Vậy, `B \vdots 21.`

ĐỖ THỊ THANH HẬU
Xem chi tiết
Hoàng Tử Hà
16 tháng 12 2020 lúc 23:06

\(X=\left(a+b\right)^n=\sum\limits^n_{k=0}C^k_n.a^k.b^{n-k}\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Rightarrow A=\sum\limits^{90}_{k=2}C^k_{90}.2^k=...\)

Hoặc có thể làm như vầy: \(A=X-C^0_{90}.2^0-C^1_{90}.2=3^{90}-1-90.2=...\)

ĐỖ THỊ THANH HẬU
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 1:54

Xét khai triển:

\(\left(1+x\right)^{90}=C_{90}^0+C_{90}^1x+C_{90}^2x^2+...+C_{90}^{90}x^{90}\)

Thay \(x=2\) ta được:

\(3^{90}=C_{90}^0+2C_{90}^1+2^2C_{90}^2+...+2^{90}C_{90}^{90}\)

Vậy \(B=3^{90}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 7 2017 lúc 2:59

Thu Cuc Le Thi
Xem chi tiết
Lê Gia Bảo
9 tháng 7 2017 lúc 20:30

Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)

\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)

\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)

\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)

\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)

\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)

\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)

Áp dụng vào B ta được:

\(B=100.101.201:6-4.50.51.101:6=166650\)

\(\Rightarrow A=166650+\left(200+2\right).100:2\)

\(\Rightarrow A=166650+10100=176750\)

Vậy A = 176750

Chúc bạn học tốt!!

Xem chi tiết
Nguyễn Hưng Phát
14 tháng 9 2018 lúc 21:13

Đặt \(A=1.2+2.3+.....+89.90\)

\(3A=1.2.3+2.3.3+..........+89.90.3\)

\(=1.2.3+2.3.\left(4-1\right)+.........+89.90.\left(91-88\right)\)

\(=1.2.3+2.3.4-1.2.3+.........+89.90.91-88.89.90\)

\(=89.90.91\Rightarrow A=89.30.91=242970\)

Nguyen Thi Phuong
Xem chi tiết
Không Tên
15 tháng 10 2018 lúc 18:42

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}=\frac{81}{10}\)

Anh Thư
Xem chi tiết
Dũng Nguyễn
24 tháng 2 2020 lúc 9:52

C7: A

C8:A

C9:D

Khách vãng lai đã xóa
ღ🍹🌵 Như Phạm 🌵🍹ღ
24 tháng 2 2020 lúc 9:55

A. -1;-3;-89;-98

A. 6

D. 6

~hok tốt

Khách vãng lai đã xóa
LyLy_Senpai
Xem chi tiết