Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Cần Biết
Xem chi tiết
Vũ Lê Hồng Nhung
Xem chi tiết
tth_new
Xem chi tiết
Hoàng Thị Lan Hương
3 tháng 7 2017 lúc 11:28

1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)

A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy x<2 thỏa mãn yêu cầu A<1

ngo thai huy
Xem chi tiết
ngo thai huy
23 tháng 12 2021 lúc 15:42

giúp mình mọi người ơi

Nguyễn Nhất Linh
Xem chi tiết
ngonhuminh
1 tháng 1 2017 lúc 19:46

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

Đỗ Lê Mỹ Hạnh
1 tháng 1 2017 lúc 20:00

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

Cold Wind
1 tháng 1 2017 lúc 20:06

Bài 1: 

a) \(x+2\ne0\Leftrightarrow x\ne-2\)

\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)

b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Mà đk: x khác 2 

Vậy ko tồn tại giá trị nào của x để A=0

Đỗ Phương Thảo
Xem chi tiết
Kiệt Nguyễn
24 tháng 1 2020 lúc 16:41

a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\)\(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)

+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)

\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)

+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)

+) \(x+1\ne0\Leftrightarrow x\ne-1\)

+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)

\(\Leftrightarrow x\ne0;x\ne-2\)

+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)

Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)

Khách vãng lai đã xóa
Agatsuma Zenitsu
24 tháng 1 2020 lúc 16:49

a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)

\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)

\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)

b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)

Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x-2-6-3-2-11236
x-4-1013458

Vậy ............................

Khách vãng lai đã xóa
Kiệt Nguyễn
24 tháng 1 2020 lúc 16:49

b) \(A=\left(\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right):\frac{x^2-4}{3x^2+6x}\)

\(=\left(\frac{\left(x+1\right)^2}{x^2-x+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{x^2-4}{3x^2+6x}\)

\(=\left(\frac{\left(x+1\right)^3}{x^3+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{x^3+1}\right)\)\(.\frac{3x^2+6x}{x^2-4}\)

\(=\left(\frac{x^3+3x^2+3x+1}{x^3+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{x^3+1}\right)\)\(.\frac{3x^2+6x}{x^2-4}\)

\(=\frac{x^3+1}{x^3+1}\)\(.\frac{3x^2+6x}{x^2-4}\)\(=\frac{3x^2+6x}{x^2-4}\)

\(=\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{3x}{x-2}\)

A nguyên\(\Leftrightarrow3x⋮x-2\)

\(\Leftrightarrow3\left(x-2\right)+6⋮x-2\)

Mà \(\left(x-2\right)⋮x-2\Rightarrow6⋮x-2\)

\(\Rightarrow x-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Lập bảng:

\(x-2\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(x\)\(3\)\(1\)\(4\)\(0\)\(5\)\(-1\)\(8\)\(-4\)

Vậy\(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Khách vãng lai đã xóa
[MINT HANOUE]
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 22:30

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

Phùng Thị Vân Anh
Xem chi tiết
Phùng Thị Vân Anh
25 tháng 12 2020 lúc 14:38

Mọi người ơi giải giúp mình với😥😥

❤️ Jackson Paker ❤️
25 tháng 12 2020 lúc 15:41

a)\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\\left(x-3\right)\left(x-2\right)\ne\\2\ne x\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)

b)\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^3-x-6}+\dfrac{1}{2-X}\)

 

Phuong Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 21:42

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

c: Thay x=2 vào A, ta được:

\(A=\dfrac{2+1}{2-1}=3\)

d: Để A=2 thì x+1=2x-2

=>-x=-3

hay x=3(nhận)