Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
duc pham
Xem chi tiết
duc pham
Xem chi tiết
Viral Zhou
Xem chi tiết
Trí Tiên亗
16 tháng 8 2020 lúc 21:12

A B C H D E

A)XÉT  \(\Delta ABH\)VÀ \(\Delta ADH\)

\(BH=HD\left(gt\right);\widehat{AHB}=\widehat{AHD}=90^o;\)AH LÀ CẠNH CHUNG

=> \(\Delta ABH\)=\(\Delta ADH\)(C-G-C)

=> AB = AD ( hai cạnh tương ứng )

=> \(\Delta ABD\)là tam giác cân

nhắc lại kiến thức: mà trong tam giác cân có một góc bằng 60 độ suy ra tam giác đó là tam giác đều

MÀ \(\widehat{ABH}=60^o\)hay \(\widehat{ABD}=60^o\)

=> \(\Delta ABD\)là tam giác đều

B) XÉT \(\Delta ABH\)

\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\Leftrightarrow\widehat{BAH}+60^o+90^o=180^o\Leftrightarrow\widehat{BAH}=180^o-\left(60^o+90^o\right)=30^o\)

vì \(\Delta ABH\)=\(\Delta ADH\)(cmt)

\(\Rightarrow\widehat{BAH}=\widehat{DAH}=30^o\)

có \(\widehat{BAH}+\widehat{DAH}+\widehat{DAC}=90^o\Leftrightarrow30^o+30^o+\widehat{DAC}=90^o\Leftrightarrow\widehat{DAC}=90^o-\left(30^o+30^o\right)=30^o\)

ta có \(\widehat{AHD}+\widehat{EDH}=90^o+90^o=180^o\)

hai góc này ở vị trí trong cùng phía bù nhau

=> AH // DE 

=>\(\widehat{HAD}=\widehat{ADE}=30^o\)

ta có \(\widehat{DAC}=\widehat{ADE}\)hay \(\widehat{EAD}=\widehat{ADE}\)

=> \(\Delta AED\)là tam giác cân

Khách vãng lai đã xóa
Trí Tiên亗
16 tháng 8 2020 lúc 22:37

A B C H D E F

c) xét \(\Delta ABC\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow90^o+60^o+\widehat{C}=180^o\Leftrightarrow\widehat{C}=180^o-\left(90^o+60^o\right)=30^o\)

xét \(\Delta AHC\)VÀ \(\Delta CFA\)

AC LÀ CẠNH CHUNG

\(\widehat{H}=\widehat{F}=90^o\)

\(\widehat{ACH}=\widehat{CAF}=30^o\)

=> \(\Delta AHC\)=\(\Delta CFA\)(ch-gn)

\(\Rightarrow AH=CF\left(1\right)\)

vì \(\Delta AHC\)=\(\Delta CFA\)(cmt)

\(\Rightarrow HC=FA\)

xét \(\Delta HAF\)VÀ \(\Delta FCH\)CÓ 

\(AF=CH\left(cmt\right);\widehat{HAF}=\widehat{FCH}=30^o;HA=FC\left(cmt\right)\)

=>\(\Delta HAF\)=\(\Delta FCH\)(c-g-c)

\(\Rightarrow\widehat{AFH}=\widehat{CHF}\)HAY \(\widehat{AFH}=\widehat{DHF}\)

XÉT \(\Delta HAF\)

\(\widehat{HAF}+\widehat{AHD}+\widehat{DHF}+\widehat{AFH}=180^o\)

\(\widehat{AFH}=\widehat{DHF}\)

\(\Leftrightarrow30^o+90^o+2\widehat{AFH}=180^o\)

\(\Leftrightarrow2\widehat{AFH}=60^o\)

\(\Leftrightarrow\widehat{AFH}=30^o\)

xét \(\Delta HAF\)

\(\widehat{AFH}=\widehat{HAF}=30^o\)

=>\(\Delta HAF\)cân tại H

=> \(AH=HF\left(2\right)\)

TỪ (1) VÀ (2) 

\(\Rightarrow AH=HF=FC\left(đpcm\right)\)

Khách vãng lai đã xóa
Trí Tiên亗
17 tháng 8 2020 lúc 20:49

làm cả bài này mất 1 ngày 1 đêm :<

Xét diện tích  \(\Delta ABC\) thường ta CÓ

\(S_{ABC}=\frac{AH.BC}{2}\left(1\right)\)

Xét diện tích \(\Delta ABC\)vuông ta có 

\(S_{ABC}=\frac{AB.AC}{2}\left(2\right)\)

TỪ (1) VÀ (2)

\(\Leftrightarrow S_{ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}\Leftrightarrow\frac{1}{AH}=\frac{BC}{AB.AC}\Leftrightarrow\frac{1^2}{AH^2}=\frac{BC^2}{AB^2.AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\)

Mặt khác, theo định lý Pitago thì

\(BC^2=AB^2+AC^2\)

THAY 

\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Thanh Thủy Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2021 lúc 21:58

a) Xét ΔABH vuông tại H và ΔADH vuông tại H có 

AH chung

BH=DH(gt)

Do đó: ΔABH=ΔADH(hai cạnh góc vuông)

Suy ra: AB=AD(hai cạnh tương ứng)

Xét ΔABD có AB=AD(cmt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)(gt)

nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)

Phan Vũ Việt Hà
Xem chi tiết
Vũ Thu Thảo
Xem chi tiết
Lê Thị Diệu Đan
30 tháng 5 2018 lúc 14:13

a) AH ⊥ BD (vì AH là đường cao Δ ABC )

HD=HB

⇒ AD = AB ( Quan hệ đương xiên- hình chiếu)

⇒ Δ ABD cân tại A

mà ∠ABD = 60\(^o\)

⇒ Δ ABD đều

b) Ta có : ∠ BAD +∠DAC =∠BAC

mà ∠ BAD =60\(^o\) ( Δ BAD đều ), ∠ BAC = 90\(^0\)

⇒60\(^0\) +∠ DAC = 90\(^0\)

⇒∠DAC = 90\(^0\) - 60\(^0\) =30\(^0\) (1)

Vì ED ⊥ BC ⇒ ∠EDB =90\(^0\)

Tương tự trên ∠BDA +∠ADE =∠EDB ⇒∠ADE =30\(^0\) (2)

Từ (1) và (2) ⇒ ∠DAC =∠ ADE =30\(^0\)

⇒ Δ AED cân tại E

c)Ta có:∠BDA+ ∠ADC= 180\(^0\) ,mà ∠BDA=60\(^0\)

⇒∠ADC=180\(^0\)- 60\(^0\)= 120\(^o\)

ΔADC có: ∠ADC+ ∠DAC +∠ DBA =180\(^o\)

⇒120\(^o\) +30\(^o\) + ∠ DBA= 180\(^o\)

⇒∠DBA=30\(^o\)

⇒∠DBA =∠ DAC =30\(^o\) ⇒ ΔADC cân tại D

Xét Δ AHD , Δ CFD có:

AH⊥BC, CF⊥AD

AD=DC ( Δ ACD cân tại D)

∠HDA =∠ FDC ( vì đối đỉnh )

⇒ Δ vuông AHD = Δ vuông CFD ( cạnh huyền - góc nhọn)

⇒ HA= FC( 2 cạnh tương ứng ) (3)

và HD=DF ( 2 cạnh tương ứng)⇒ ∠DHF =∠DFH =\(\dfrac{180^0-g\text{óc}HDF}{2}\) (theo tính chất Δ cân)(4)

Ta có: ΔDAC cân tại D (cmt)⇒∠ADC = 180\(^o\) - (∠DAC+ ∠ DCA)

=180\(^o\) -( 30\(^o\) +30\(^o\) )

= 120\(^o\)

Ta có ∠ADC = ∠ HDF= 120\(^o\) ( vì đối đỉnh )

Thay ∠HDF = 120\(^o\) vào ( 4 ) ta có:∠ HFD =(180\(^o\)- 120\(^o\)) : 2 =30\(^o\)(5)

ΔABD đều⇒ đường cao AH đồng thời là phân giác∠ BAD

⇒ ∠HAD= ∠BAD :2= 60\(^o\) :2 =30\(^o\)(6)

Từ (5),(6) ⇒ ∠HAD =∠HFD ⇒HA =HF (tính chất Δ cân) (7)

Từ (3), (7) ⇒HA =HF=FC

Cong Anh Le
29 tháng 5 2018 lúc 21:09
Nguyễn Văn A
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 8:20

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD
mà góc B=60 độ

nên ΔABD đều

b: góc CAD=90-60=30 độ=góc HAD

=>AD là phân giác của góc HAC

=>DH/AH=DC/AC

mà AH<AC

nên DH<DC

Nguyễn Văn Sơn
Xem chi tiết
Bao Ngoc Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 20:43

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: Gọi K là giao của CM và AH

Xét ΔAKC có

AM,Ch là đường cao

AM cắt CH tại D

=>D là trực tâm

=>KD vuông góc AC

=>K,D,E thẳng hàng

=>AH,ED,CM đồng quy

Trần Thảo Uyên
14 tháng 9 2023 lúc 18:56

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: Gọi K là giao của CM và AH

Xét ΔAKC có

AM,Ch là đường cao

AM cắt CH tại D

=>D là trực tâm

=>KD vuông góc AC

=>K,D,E thẳng hàng

=>AH,ED,CM đồng quy