Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Anh Quan
Xem chi tiết
Đặng Phạm Bằng
Xem chi tiết
The End
13 tháng 6 2015 lúc 16:13

\(\frac{1}{2^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+...+\frac{1}{50^2}\right)

Nguyen Anh Quan
Xem chi tiết
Hoàng Tử Bóng Đêm
29 tháng 8 2017 lúc 19:49

khó ngược

làm nhé Thánh

Amazons Mega
Xem chi tiết
Earth-K-391
Xem chi tiết

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

Quynh Anh
19 tháng 5 2021 lúc 9:45

Ta có:S=1/50+1/51+1/52+...+1/99

S>1/50+1/50+1/50+....+1/50(50 số hạng)

S>1/50x50

S>1>1/2

=>S>1/2

Quậy nhất xóm
Xem chi tiết
Nguyễn Duy Long
12 tháng 4 2016 lúc 21:13

Từ đề bài suy ra: A=3/4 x 8/9 x ...x 9800/9801 x 9999/10000

                       =>A=<1x3/2x2> x <2x4/3x3> x ... x <99x101/100x100>

                       =>A=(1x2x...x99)/(2x3x...x100) x (3x4x...x101)/(2x3x...x100) 

                       =>A=1/100 x 101/2 = 101/200

Nguyễn Ngọc Quang
12 tháng 4 2016 lúc 21:14

BẠn hãy tính ra rồi phân tích tử và mẫu là ra

Lê Minh Trang
Xem chi tiết
Thắng Nguyễn
17 tháng 4 2016 lúc 21:19

a)đặt B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

b,c tự làm

Nguyễn Hoàng Vũ
17 tháng 4 2016 lúc 21:26

Thế mà ko biết làm

Nguyễn Hoàng Vũ
17 tháng 4 2016 lúc 21:28

Thế mà ko biết làm

Đặng Hoàng Uyên Lâm
Xem chi tiết
Đặng Hoàng Uyên Lâm
19 tháng 3 2019 lúc 21:17

Là < 2 nha ko phải < 22

Hoàng Vân Nhi
Xem chi tiết
svtkvtm
13 tháng 3 2019 lúc 11:09

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\Rightarrow A=B\text{(đpcm)}\)

Gos FireBoy
13 tháng 3 2019 lúc 11:00

Ta cos ..............

suy ra A=B

Nguyen thi quynh anh
13 tháng 3 2019 lúc 21:45

bài này chắc mình không làm được rồi, xin lỗihihihihi