Tìm GTNN của: cặn bậc 2 x^2-7x+5
1) So sánh A và B:
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
B = căn bậc hai của 196 - 1/căn bậc hai của 6
2) Tìm GTNN của A = 2 + căn bậc hai của x
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
Ai nhanh nhất mình tick nha! Làm ơn giải giùm nhaaaaaaaaaaaaaaaaaaaaaaaa!
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
Tìm gtnn, gtln của A= x^2+8x+15 B= 7x-x^2-5
1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)
\(minA=-1\Leftrightarrow x=-4\)
2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)
\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)
Ta có: \(A=x^2+8x+15\)
\(=x^2+8x+16-1\)
\(=\left(x+4\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=-4
Tìm GTNN của
A=3x^2-x+4
B=(x-2)(x-5)(x^2-7x-10)
A=3x2-x+4
\(=3\left(x^2-\frac{x}{3}+\frac{4}{3}\right)\)
\(=3\left(x-\frac{1}{6}\right)^2+\frac{47}{12}\ge0+\frac{47}{12}=\frac{47}{12}\)
Dấu = khi \(x=\frac{1}{6}\)
Vậy MinA=\(\frac{47}{12}\Leftrightarrow x=\frac{1}{6}\)
B=(x-2)(x-5)(x2-7x-10)
=(x2-7x+10)(x2-7x-10)
Đặt t=x2-7x+10 đc:
B=t(t-20)=t2-20t
=t2-20t+100-100
=(t-10)2-100
Thay t=x2-7x+10 ta đc:
\(B=\left(x^2-7x+10-10\right)-100\ge0-100=-100\)
\(\Rightarrow B\ge-100\)
Dấu = khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)
Vậy MinB=-100 khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)
TÌM GTNN Của biểu thức
M=(x-2)(x-5) (x2-7x-10)
\(M=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x\right)^2-10^2\)
\(=\left(x^2-7x\right)^2-100\ge-100\)
dấu = xảy ra khi x=0 hoặc x=7
vậy \(GTNN\) của M là -100 hoặc x=0;x=7
học tốt nhoa bạn
\(M=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-5x-2x+10\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
Đặt x2-7x=t
=>\(M=\left(t+10\right)\left(t-10\right)=t^2-100=\left(x^2-7x\right)^2-100\ge-100\)
Dấu "=" xảy ra khi x=0 hoặc x=7
Vậy MinA=-100 khi x=0 hoặc x=7
M = ( x - 2 )( x - 5 )( x2 - 7x - 10 )
M = ( x2 - 7x + 10 )( x2 - 7x - 10 )
M = ( x2 - 7x )2 - 102
= ( x2 - 7x )2 - 100
( x2 - 7x )2 ≥ 0 ∀ x => ( x2 - 7x )2 - 100 ≥ -100
Đẳng thức xảy ra <=> x2 - 7x = 0
<=> x( x - 7 ) = 0
<=> x = 0 hoặc x = 7
Vậy MinM = -100 <=> x = 0 hoặc x = 7
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . | ||
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 | ||||||||||||||||||||
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Tìm m sao cho :
2x^3 - 3x^2 + x + m = (x + 2 ) . ( 2x^2 - 7x +15 )
Mình cần giải thích cặn kẽ ạ !
#)Giải :
\(2x^3-3x^2+x+m=\left(x+2\right)\left(2x^2-7x+15\right)\)
\(\Leftrightarrow2x^3-3x^2+x+m=2x^3-7x^2+15x+4x^2-14x+30\)
\(\Leftrightarrow-3x^2+x+m=-3x^2+x+30\)
\(\Leftrightarrow m=30\)
Cho các đa thức :
A(x)= -1+5x6-6x2-5-9x6+4x4-3x2
B(x)= 2-5x2+3x4-4x2+3x+x4-4x6-7x
a) thu gọn và sắp xếp các đa thức theo lũy thừa giảm cuả biến
b) Tìm bậc và hệ số của mỗi đa thức
c) tìm nghiệm của đa thức C(x)=A(x)-B(x)
d) tìm x để đa thức M(x)= C(x)+ x2 có GTNN
tìm GTNN đó
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
Cho f(x)=5x^3 -7x^2 +2x+5
h(x)=2x^3 +4x+1
g(x)= 7x^3 -7x^2 +2x +5
a)tính f(1) ,g(1/2),h(0)
b)tính k(x)= f(x) -g(x) +h(x) m(x)=3h(x) -2f(x)
c) tìm bậc của k(x),tìm nghiệm của k(x)
a) \(f\left(x\right)=5x^3-7x^2+2x+5\)
\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)
\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)
\(\Rightarrow f\left(1\right)=5-7+7\)
\(\Rightarrow f\left(1\right)=5\)
Vậy f(1) = 5.
\(g\left(x\right)=7x^3-7x^2+2x+5\)
\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)
Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)
\(h\left(x\right)=2x^3+4x+1\)
\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)
\(\Rightarrow h\left(0\right)=0+0+1\)
\(\Rightarrow h\left(0\right)=1\)
Vậy \(h\left(0\right)=1\)
b)\(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=5x^3-7x^2+2x+5-2x^3-4x-1+7x^3-7x^2+2x+5\)
Rút gọn rồi tìm k(x)
Tìm M(x) tương tự
c) Bậc của k(x) là đơn thức có bậc cao nhất là 3
Nghiệm của k(x) là khi k(x) = 0 . Như câu a)
Tìm GTNN của x khi x+cân bậc 2 của x+2 (sory do ko bt viết kí hiệu cân bậc)
Để biểu thức có nghĩa, ta cần điều kiện trong căn bậc hai phải không âm: x+2≥0⟹x≥−2
Đặt t=x+2. Vì x≥−2, nên x+2≥0, suy ra t=x+2≥0. Từ đó, ta có t2=x+2⟹x=t2−2.
Thay x vào biểu thức A, ta được: A=(t2−2)+t=t2+t−2
Đây là một hàm số bậc hai với biến t. Để tìm giá trị nhỏ nhất của A, ta có thể biến đổi nó về dạng bình phương: A=t2+t−2=(t2+2⋅t⋅21+(21)2)−(21)2−2 A=(t+21)2−41−48 A=(t+21)2−49
Vì (t+21)2≥0 với mọi t, nên giá trị nhỏ nhất của (t+21)2 là 0. Vậy, giá trị nhỏ nhất của A là: Amin=0−49=−49
Giá trị này đạt được khi: t+21=0⟹t=−21
Tuy nhiên, từ điều kiện xác định ở Bước 1, ta có t=x+2≥0. Giá trị t=−21 không thỏa mãn điều kiện này. Điều này có nghĩa là giá trị nhỏ nhất của biểu thức không đạt được tại đỉnh của parabol.
Khi đó, ta cần xét giá trị của A tại biên của miền xác định của t. Miền xác định của t là t≥0. Vì hàm số A=t2+t−2 là một hàm bậc hai có parabol hướng lên trên, và đỉnh của parabol nằm tại t=−21 (nằm ngoài miền xác định t≥0), nên hàm số A đồng biến trên miền t≥0. Do đó, giá trị nhỏ nhất của A sẽ đạt được tại giá trị nhỏ nhất của t, tức là tại t=0.
Khi t=0, ta có: A=02+0−2=−2
Với t=0, ta có: x+2=0⟹x+2=0⟹x=−2
Giá trị x=−2 thỏa mãn điều kiện xác định (x≥−2).
Vậy, giá trị nhỏ nhất của x là -2.
\(\sqrt{x + 2}\) có nghĩa khi:
\(x + 2 \geq 0 \Rightarrow x \geq - 2\)
Bước 2: Đặt ẩn phụĐặt \(t = \sqrt{x + 2} \geq 0\).
Khi đó \(x = t^{2} - 2\).
Thay vào \(f \left(\right. x \left.\right)\):
\(f \left(\right. x \left.\right) = \left(\right. t^{2} - 2 \left.\right) + t = t^{2} + t - 2\)
Bước 3: Tìm GTNNXét hàm \(f \left(\right. t \left.\right) = t^{2} + t - 2\) với \(t \geq 0\).
Đây là hàm bậc hai, hệ số \(a = 1 > 0\) → parabol hướng lên.Đỉnh tại \(t = - \frac{b}{2 a} = - \frac{1}{2}\) (nhưng giá trị này không thuộc miền \(t \geq 0\)).Vậy GTNN xảy ra tại biên \(t = 0\).f(0)=02+0−2=−2
=>Giá trị nhỏ nhất của biểu thức là \(- 2\), đạt được khi \(x = - 2\).
\(\)