\(Choa,b,c>1Chứngminh\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{6c^2}{c-1}>=48\)48
Cho a,b,c ≠0, 4a+5b-6c=-5, \(\frac{1}{4a}\)+\(\frac{1}{5b}\)-\(\frac{1}{6c}\)=0
Tính 16a2+25b2+36c2
Đặt \(\left(4a;5b;-6c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=-5\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=25\\\frac{xy+yz+zx}{xyz}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=25\\xy+yz+zx=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=25\) hay \(16a^2+25b^2+36c^2=25\)
Cho a,b,c>0 chứng minh\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge48\)
Ta có : ( x - 2 )2 \(\ge\)0 \(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0
\(\Rightarrow\) x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4
\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)
\(\frac{1}{2\left(a+b\right)}+\frac{1}{3\left(b+c\right)}+\frac{1}{6\left(c+a\right)}>=\frac{6}{4a+5b+3c}\)
Cho \(a,b,c>1\) . \(CMR:\)
\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge48\)
Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)
\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)
\(=4\left(a-1\right)+\frac{4}{a-1}+8\)
Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được
\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)
\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)
\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\) (1)
Chững minh tương tự, ta được
\(\frac{5b^2}{b-1}\ge20\) (2)
\(\frac{3c^2}{c-1}\ge12\) (3)
Cộng (1)(2)(3) ta được
\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)
bài 1 : Cho 3 số dương a,b,c
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
Tính \(M=\frac{21ab^{2015+12bc^{2015}+15ca^{2015}}}{a^{2016}+b^{2016}+c^{2016}}\)
Bài 2 : Cho 4a = 5b = 6c
Tính \(A=\frac{7a^2+8b^2-9c^2}{4a^2-3b^2+c^{2016}}\)
Bài 3 : Tìm a , b , c biết :
\(\left|\frac{a}{2}-\frac{b}{3}\right|+\left|\frac{b}{4}-\frac{c}{3}\right|+\left|a+b+c-58\right|=0\)
Ai giúp với thanks nhìu nhưng time của e chỉ có từ bây h đến 5h45 sáng mai thôi mong mọi người giúp đỡ :v !! ( làm dc bài nào cx dc ạ )
Bài 3:
Ta có:\(|\frac{a}{2}-\frac{b}{3}|+|\frac{b}{4}-\frac{c}{3}|+|a+b+c-58|=0.\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{2}-\frac{b}{3}=0\\\frac{b}{4}-\frac{c}{3}=0\\a+b+c-58=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{3}\\a+b+c=58\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\\a+b+c=58\end{cases}}}\)
\(\Leftrightarrow\frac{a+b+c}{8+12+9}=\frac{58}{29}=2\)
=> a/8=2 Vậy a=16
=> b/12=2 Vậy b=24
=> c/9=2 Vậy c=18
Cho a,b,c > 1. CMR: \(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\text{ ≥ }48\)
\(\dfrac{4a^2}{a-1}=\dfrac{a\left(a^2-1\right)+4}{a-1}=4\left(a+1\right)+\dfrac{4}{a-1}+8\ge8+8=16\)
\(\dfrac{5b^2}{b-1}=5\left(b-1\right)+\dfrac{5}{b-1}+10\ge20\)
\(\dfrac{3c^2}{c-1}=3\left(c-1\right)+\dfrac{3}{c-1}+6=12\)
\(\Rightarrow dpcm\)
1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)
1.Cho các số a, b, c thỏa mãn điều kiện: \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^3}{\left(5b+4c\right)^2.\left(a+3c\right)}\)
Choa a+b+c=0
tính \(M=\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{b^2+c^2-a^2}\)
trình bày cách làm nữa nha
Hình như có cả abc khac 0 nữa mà nếu như z thì giải nè
Từ a+b+c=0 =>a= - (b+c)
a^2 = (b+c)^2
b= - (a+c)
b^2= (a+c)^2
c= - (a+b)
c^2=(a+b)^2
M= 1/a^2+b^2-(a+b)^2 + 1/a^2+c^2-(a+c)^2 + 1/b^2+c^2-(b+c)^2
M= 1/-2ab + 1/-2ac + 1/-2bc
M= -c/2abc + -b/2abc + -a/2abc
M= -(a+b+c)/2abc
mà a+b+c=0
Vậy M=0