Cho a,b,c>0 chứng minh\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge48\)
Choa a+b+c=0
tính \(M=\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{b^2+c^2-a^2}\)
trình bày cách làm nữa nha
Choa,b,c đôi một khác nhau thỏa mãn \(a^3+b^3+c^3=3abc\)
Chứng minh :\(\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2-b^2+c^2}+\frac{1}{-a^2+b^2+c^2}=0\)
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)
cho ba số dương a,b,c thỏa mãn a+b+c=\(\frac{1}{4}\)va a^2+b^2+c^2=\(\frac{1}{48}\) .
Tính giá trị của biểu thức ; P=\(\frac{b+c}{a}+\frac{c+a}{2b}+\frac{a+b}{3c}\)
\(Choa,b,c>0,\)thỏa mãn a+b+c=3. Chứng minh rằng
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\) (bằng phương pháp UCT, chỉ rõ cách làm ra BĐT phụ giúp mink với ạ!)
Cho a,b,c dương thỏa mãn abc= 1.CMR:
\(\frac{1}{b\left(5a+b\right)}+\frac{1}{c\left(5b+c\right)}+\frac{1}{a\left(5c+a\right)}\ge\frac{1}{2}\)
CMR biểu thúc sau không phụ thuộc vào a,b,c
B=\(\frac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\frac{4b^2-1}{\left(b-c\right)\left(b-a\right)}\frac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)(với a,b,c đôi 1 khác nhau)
Cho a,b,c>0 TM a+b+c=1.
Tìm GTNN của P=\(\frac{1}{2+4a}+\frac{1}{3+9b}+\frac{1}{6+3c}\)