Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dương
Xem chi tiết
Tran Dat
Xem chi tiết
Đặng Tuấn Anh
Xem chi tiết
phan thị hảo
22 tháng 2 2021 lúc 22:18

Tự vẽ hình

Tứ giác DBFC nội tiếp => góc FDC =FBC và CBD= CFD

Tứ giác DAEC nội tiếp => góc CDE=EAC và CAD = CED

Mà EAC = EBA, CBF = CAB  ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung )

ð CDF = CED VÀ CFD= CDE => tam giác ECD đồng dạng tam giác DCF => EDF = CAB + CBA mà CAB + CBA + ACB = 180 => IDK + ICK = 180 => tứ giác CIDK nội tiếp => CKI = CDI = CFD= CBA => IK// AB (đfcm )

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Ank Dương
Xem chi tiết

a: Sửa đề: MK\(\perp\)AB

Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)

nên BIMK là tứ giác nội tiếp

=>B,I,M,K cùng thuộc một đường tròn

b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)

nên IMHC là tứ giác nội tiếp

=>\(\widehat{MHI}=\widehat{MCI}\)(1)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)

Xét (O) có

\(\widehat{MCB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM

Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)

Ta có: IMHC là tứ giác nội tiếp

=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM

Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)

Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)

Xét ΔMIH và ΔMKI có

\(\widehat{MIH}=\widehat{MKI}\)

\(\widehat{MHI}=\widehat{MIK}\)

Do đó: ΔMIH~ΔMKI

=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)

=>\(MI^2=MH\cdot MK\)

ABCXYZ
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
Nguyễn Linh Chi
24 tháng 9 2019 lúc 21:51

O C F A E B M P Q 1

+) Bước 1: Chứng minh \(\Delta\) FPO vuông tại P

Ta có: \(\widehat{O_1}=\widehat{FOP}=\widehat{FOE}=\widehat{FOM}+\widehat{MOE}=\frac{1}{2}\widehat{COM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{BOC}\)

=> \(\widehat{FOP}=\frac{1}{2}\widehat{BOC}\)

mà \(\widehat{FCP}=\widehat{FCB}=\frac{1}{2}\widehat{BOC}\) ( góc nội tiếp = 1/2 góc ở tâm khi chắn cùng một cung)

=> \(\widehat{FOP}=\widehat{FCP}\)

=> Tứ giác CFPO nội tiếp  => \(\widehat{FPO}+\widehat{FCO}=180^o\Rightarrow\widehat{FPO}=180^o-90^o=90^o\)

=>  \(\Delta\) FPO vuông tại P

+) Bước 2: Chứng minh  \(\Delta\) EQO vuông tại Q. ( Chứng minh tương tự)

+) Bước 3: Chứng minh tỉ số: \(\frac{PQ}{EF}=\frac{OQ}{OE}\)

Xét  \(\Delta\) FPO vuông tại P và  \(\Delta\) EQO vuông tại Q có: \(\widehat{O_1}\) chung 

=>  \(\Delta\) FPO  ~  \(\Delta\) EQO

=> \(\frac{OQ}{OE}=\frac{OP}{OF}\)

Xét  \(\Delta\) OQP và  \(\Delta\) OEF  có: \(\frac{OQ}{OE}=\frac{OP}{OF}\)( chứng minh trên ) và \(\widehat{O_1}\) chung

=>  \(\Delta\) OQP ~  \(\Delta\) OEF

=> \(\frac{PQ}{EF}=\frac{OQ}{OE}\)(1) 

+) Bước 4: Chứng minh Tỉ số \(\frac{PQ}{EF}\)không đổi khi M di chuyển trên cung nhỏ BC

Xét \(\Delta\)EQO vuông tại Q  => \(\cos\widehat{O_1}=\frac{OQ}{OE}\)

Mặt khác : \(\widehat{O_1}=\frac{1}{2}\widehat{BOC}\) ( xem chứng minh ở Bước 1) 

=> \(\cos\frac{1}{2}.\widehat{BOC}=\frac{OQ}{OE}\) (2)

Từ (1) ; (2) => \(\frac{PQ}{EF}=\cos\frac{1}{2}.\widehat{BOC}\)không đổi  khi M di chuyển. ::))

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 14:23

góc AIM+góc AKM=180 độ

=>AIMK nội tiếp

Nguyễn Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 19:00

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Ta có: OB=OC

AB=AC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC