Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Hường
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Bùi
Xem chi tiết
Minh Triều
4 tháng 5 2016 lúc 20:43

a) dễ

b)phương trình hoành độ  giao điểm

Nguyễn Tuấn
4 tháng 5 2016 lúc 21:18

a) tự vẽ

b) pt hoành độ

x^2=x+2

giải ra được x1=...;x2=,,,,,

thay x1=...;x2=... vô y=x^2

ta được y1=...;y2=...

ta được A;B có vị trí A(x1;y1);B(x2;y2)

Nguyễn Thị Ánh Dương
Xem chi tiết
trinh quang huy
Xem chi tiết
binn2011
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 13:47

Xét phương trình hoành độ giao điểm của  d 1   v à   d 2

x   +   2   =   − 2 x   +   5 ⇔     x   =   1   ⇒   y   =   3   ⇒   d 1   ∩   d 2   t ạ i   M   ( 1 ;   3 )

Gọi H là chân đường vuông góc kẻ từ M tới Ox. Suy ra MH = 3

d ∩  Ox tại A (−2; 0) ⇒  OA = 2

d’ Ox tại B 5 2 ; 0      O B   =     5 2

  A B   =   O A   +   O B   =   2   + 5 2   =     9 2

SMAB = 1 2  AB.MH = 1 2 . 3 9 2 =   27 4 (đvdt)

Đáp án cần chọn là: D

Trần Hoàng Thiên Bảo
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 11 2016 lúc 20:58

a/ Bạn tự vẽ

b/ Ta lập pt hoành độ giao điểm : 

(d1) giao với (d2) : \(-x-5=\frac{1}{4}x\Leftrightarrow x=-4\) thay vào (d1) được y = -1

Vậy A(-4;-1) . Tương tự ta tìm được điểm B(-1;-4)

c/ Ta có : \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(-1+4\right)^2+\left(-4+1\right)^2}=3\sqrt{2}\)

\(OA=\sqrt{x_A^2+y_A^2}=\sqrt{4^2+1^2}=\sqrt{17}\) ; \(OB=\sqrt{x_B^2+y_B^2}=\sqrt{1^2+4^2}=\sqrt{17}\) 

=> OAB là tam giác cân

d/ Gọi OH là đường cao hạ từ O xuống AB (H thuộc AB)

Vì tam giác OAB cân tại O nên AH = HB = 1/2AB = \(\frac{3\sqrt{2}}{2}\)

\(OH=\sqrt{OA^2-BH^2}=\sqrt{17-\left(\frac{3\sqrt{2}}{2}\right)^2}=\frac{5\sqrt{2}}{2}\)

\(S_{ABC}=\frac{1}{2}AB.OH=\frac{1}{2}.3\sqrt{2}.\frac{5\sqrt{2}}{2}=\frac{15}{2}\) 

minh anh minh anh
9 tháng 11 2016 lúc 21:07

câu b giải pt hoành độ giao điểm bài này de ma

Lizy
Xem chi tiết

Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x-2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2}{m-1}\end{matrix}\right.\)

=>\(A\left(\dfrac{2}{m-1};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x-2=0\left(m-1\right)-2=-2\end{matrix}\right.\)

=>B(0;-2)

O(0;0); \(A\left(\dfrac{2}{m-1};0\right)\); B(0;-2)

\(OA=\sqrt{\left(\dfrac{2}{m-1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2}{m-1}\right)^2}=\dfrac{2}{\left|m-1\right|}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(-2-0\right)^2}=\sqrt{0+4}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|m-1\right|}=\dfrac{2}{\left|m-1\right|}\)

Để \(S_{OAB}=8\) thì \(\dfrac{2}{\left|m-1\right|}=8\)

=>\(\left|m-1\right|=\dfrac{1}{4}\)

=>\(\left[{}\begin{matrix}m-1=\dfrac{1}{4}\\m-1=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)