Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shitbo
Xem chi tiết
Hoàng Tuấn Hùng
Xem chi tiết
Nguyễn Minh Quang 123
Xem chi tiết
Đức Thắng
17 tháng 9 2015 lúc 22:17

Áp dụng BĐT Bu nhi a cốp x ki 

\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)

=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)

=> \(10^2\le5\left(x+y\right)\)

Tiếp nha 

Linh An Trần
Xem chi tiết
Hoàng Anh Thư
30 tháng 6 2018 lúc 21:40

Áp dụng BĐT bunhiacopxki ta có:

\(A^2=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)(1)

thay \(\sqrt{x}+2\sqrt{y}=10\)vào 1 ta đc \(10^2\le5\left(x+y\right)< =>x+y\ge20\)

Con Bò Nguyễn
Xem chi tiết
missing you =
18 tháng 6 2021 lúc 20:18

ta có: \(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)

áp dụng BDT Bunhia 

\(\sqrt{x}+2\sqrt{y}\le\sqrt{\left(1+2^2\right)\left(x+y\right)}\)

\(=>100\le5\left(x+y\right)=>x+y\ge\dfrac{100}{5}=20\)

Nguyễn Anh Khoa
Xem chi tiết
Hoàng Lê Bảo Ngọc
8 tháng 7 2016 lúc 8:58

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)

\(\Rightarrow\left(x+y\right)\ge\frac{100}{5}=20\Rightarrow x+y\ge20\)

Nguyễn Anh Khoa
Xem chi tiết
Minh Triều
8 tháng 7 2016 lúc 8:16

Đề có chút ko đúng bạn xem lại

Phạm Ngọc Lê Phương
8 tháng 7 2016 lúc 8:22

thiếu đề

Thức Vương
Xem chi tiết
phạm minh tâm
15 tháng 3 2018 lúc 19:51

chuyển vế nhân liên hợp để tạo nhân tử chung là x-y

Phan Thị Hà Vy
Xem chi tiết
Đàm Thị Minh Hương
13 tháng 7 2018 lúc 9:45

ĐKXĐ: x,y >1

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)

\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

Phương Trình Hai Ẩn
13 tháng 7 2018 lúc 9:34

Giả sử x=y

Khi đó:

\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)

\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)

Luôn đúng 

Vậy ta suy ra đpcm