ta có: \(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
áp dụng BDT Bunhia
\(\sqrt{x}+2\sqrt{y}\le\sqrt{\left(1+2^2\right)\left(x+y\right)}\)
\(=>100\le5\left(x+y\right)=>x+y\ge\dfrac{100}{5}=20\)
ta có: \(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
áp dụng BDT Bunhia
\(\sqrt{x}+2\sqrt{y}\le\sqrt{\left(1+2^2\right)\left(x+y\right)}\)
\(=>100\le5\left(x+y\right)=>x+y\ge\dfrac{100}{5}=20\)
chứng minh (x+Y+Z\(\ge\)0 ) x + y + z \(\ge\) \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Cho x,y,z dương. Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)
cho x,y,z>0 và \(x+y+z=\dfrac{3}{2}\)
chứng minh rằng \(\dfrac{\sqrt{x^2+xy+y^2}}{4yz+1}+\dfrac{\sqrt{y^2+yz+z^2}}{4zx+1}+\dfrac{\sqrt{z^2+xz+x^2}}{4xy+1}\ge\dfrac{3\sqrt{3}}{4}\)
chứng minh đẳng thức \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x+\sqrt{y}}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
cho x, y, z >0. chứng minh \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}}< 2\)
chứng minh
\(\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}=4\)
Cho x,y,z \(\ge\)0 thỏa mãn:
\(4x+2y+2z-4\sqrt{xy}-4\sqrt{xz}+2\sqrt{yz}-10\sqrt{z}-6\sqrt{y}+34=0\)
Tính giá trị của biểu thức M = (x-15)10+(y-8)6+(z-24)2017
cho x,y,z>0 và x+y+z=\(\sqrt{2}\). chứng minh rằng
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\ge4\sqrt{2}\)