bài 1cho p(x)=a+b(x-1).tim a,b biet x=0 la 1 nghiem và x=5
a,tim a biet da thuc A(x)=ax2- 1/2x +1 co 1 nghiem la -1/2
b, tim a,b cua da thuc :B(x)= ax2+bx+5 biet B(1)=6 va B(-2) = 15
c, cho da thuc C(x)= ax+b .Tim a,b biet :
x=4 la nhgiem cua C(x)va C(2)=1
Tim nghiem cua f(x) = (x-1)(x+3). Tim gia tri a,b cua g(x) = x3 - ax2 + bx -3. Biet nghiem cua f(x) cung la nghiem cua g(x)
biet rang phuong trinh (x-3a+1)(3x+2a-5)=0 (a la tham so nguyen duong ) co mot nghiem x=1 . nghiem con lai cua phuong trinh la x=....
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
cho cac da thuc f(x)=ax+b va g(x)=bx+a trong do a;b khac 0 biet rang nghiem cua da thuc f(x) la so duong cmr nghiem cua da thuc g(x) cung la 1 so duong
1) Cho biet X=-2 la nghiem cua p(x) =aX+b (a khac 0 ) tinh \(\frac{2016a+b}{3a-b}\)
2)xho biet X=-2 la nghiem cua da thuc A(x)=aX+b (a khac 0) Tinh \(\frac{2014a+b}{3a-b}\)
cho phuong trinh x^2+2(m-1)x-4m=0(1) . a giai phuong trinh voi m=2 b tim m de phuong trinh (1) co hai nghiem phan biet x1,x2 va x1,x2 la hai so doi nhau
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
Tim cap so x,y thoa man:
(x+y-2)^2 +7 = 14 / |y-1| + |y-3|
|x+y+2| + 5 = 30 / 3 |y+5| + 6
(2-x) (x+1) = |y+1|
(x+3) (1-x) = |y|
(x-2) (5-x) = |2y+1| + 2
Xac dinh a va b biet nghiem cua da thuc f(x) = (x-1) (x+2) cx la nghiem cua da thuc g(x) = x^3 + a x^2 + bx + 2
cho hai da thuc sau:
f(x) = ( x-1) ( x+2) g(x) = x3 + ax2 +bx +2 A) tim nghiem cua f(x) B) xac dinh a va b biet nghiem cua da thuc f(x) cung la nghiem cua da thuc g(x)
cho biet x=can 2 la 1 nghiem cua phoung trinh: X^3+ax^2+bx+c=0 voi cac he so huu ty. tim ca c nghiem con lai