S=1/1.2+1/2.3+1/3.4+......+1/99.100 so sanh S voi 1
S=1/1.2+1/2.3+1/3.4+1/4.5+....+1/99.100
bạn tách ra, 1/1.2=1-1/2 cứ như thế, rồi trừ đi còn 1-1/100=99/100
Tìm S=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
Giải:
Ta có: \(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}...+\dfrac{1}{99.100}\)
\(\Leftrightarrow S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S=\dfrac{1}{1}-\dfrac{1}{100}\)
\(\Leftrightarrow S=1-\dfrac{1}{100}\)
\(\Leftrightarrow S=\dfrac{99}{100}\)
Vậy ...
S= 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
S=1-1/100=99/100
S=1/1.2+1/2.3+1/3.4+...+1/99.100
S=1/1.2+1/2.3+1/3.4+...+1/99.10
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
Tính tổng
S=1.2+2.3+3.4+4.5+...+99.100
S=1.2+2.3+...+(n-1).n. (n thuộc N sao)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
s=1.2+2.3+3.4+....+99.100 giup minh voi
s=1.2+2.3+3.4+...+99.100
=>3s=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.3+2.3.(4-1)+...+99.100.(101-98)
=1.2.3-1.2.3+2.3.4-2.3.4+...-98.99.100+99.100.101
=99.100.101
=>s=99.100.101/3=333300
1)S=1+22+23+24+26+.....+22016.so sanh S vs 22018
2)tinh tong:\(M=\frac{4}{1.2}+\frac{8}{2.3}+\frac{14}{3.4}+.....+\frac{9902}{99.100}\)
a, S< 22018
b, M=1.2+2/1.2+2.3+2/2.3+.....+99.100+2/99.100
M= 2+2+2+2+2+2+.....+2
M=100 vì có 50 số 2
1, tìm x thuộc N biết
32+42=5x-1
2, tính tổng
S=1.2+2.3+3.4+...+99.100
S=1.2+2.3+3.4+...+99.100
giúp mình nha mình đang cần gấp,thanks mn
1. ta có :
\(3^2+4^2=5^{x-1}\)
\(25=5^{x-1}\)
\(5^2=5^{x-1}\)
=> x = 3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3S = 99.100.101
=> S = 99.100.101/3
=> S = 333300
tinh 1 cách thuận tiện:
Tính tổng : S=1.2+2.3+3.4+.....+99.100
S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ......... + 99.100(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 99.100.101 - 98.99.100
=> 3S = (1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101) - (1.2.3 + 2.3.4 + .......... + 98.99.100)
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
Đặt S = 1 x 2 + 2 x 3 + 3 x 4 +... + 99 x 100
3 S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 98 x 99 x 3 + 99 x 100 x 3
3 S = 1 x 2 x 3 + 2 x 3 ( 4 - 1 ) + 3 x 4 ( 5 - 2 ) + ... + 98 x 99 ( 100 - 97 ) + 99 x 100 ( 101 - 98 )
3 S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... - 97 x 98 x 99 + 99 x 100 x 101 - 98 x 99 x 100
3 S = 99 x 100 x 101 3S = 3 x 33 x100 x 101
S = 33 x 100 x 101 = 333 300
Tính tổng: a) S=1+1/2+1/4+1/8+...+1/1024
b)1+2+3+...+200
c) S=1.2+2.3+3.4+...+99.100
a) S= 1+ 1/2 + 1/4 +1/8+ …+1/1024
½ S=1/2x1+1/2x1/2+1/2x1/4+1/2x1/8+… + 1/1024
=1/2+1/8+1/16+…+1/1024+1/2048-(1+1/2+1/4+1/8+…+1/1024)
S - ½ S=1-1/2048
=2047/2048
S=2047/2048:1/2
=1,999023438
b) Giải
Khoảng cách : 1
Số số hạng là :
(100-1):1+1=100(số)
Tổng các số là :
(100+1)x100:2=5050
Đáp số 5050
c) Giải
Khoảng cách : 1.1
Số số hạng là:
(99,100-1,2):1.1+1=90(số)
Tổng các số là :
(99,100+1,2)x90 :2=4513,5
Đáp số 4513,5
a) Mình có cách khác nha :
Ta có \(S=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{1024}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+......+\frac{1}{512}\)
\(\Rightarrow2S-S=2-\frac{1}{1024}\)
\(\Rightarrow S=\frac{2047}{1024}\)
\(B=1+2+3+....+200\)
\(2B=1+2+....+200+1+2+...+200\)
\(2B=\left(1+200\right)+\left(2+199\right)+....+\left(1+200\right)\)
\(2B=201+201+....+201\)
\(\Rightarrow B=\frac{200\cdot201}{2}=20100\)
\(S=1.2+2.3+3.4+..+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+....+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+99.100.\left(101-98\right)\)
\(3S=1.2.3+2.3.4+3.4.5+....+99.100.101\)
\(\Rightarrow S=\frac{99.100.101}{3}=333300\)